{"title":"用片上网络代替全球电线:功率分析","authors":"Seongmoo Heo, K. Asanović","doi":"10.1145/1077603.1077692","DOIUrl":null,"url":null,"abstract":"This paper explores the power implications of replacing global chip wires with an on-chip network. The authors optimized the network links by varying repeater spacing, link pipelining, and voltage scaling, to significantly reduce the energy to send a bit across chip. An analytic model of large chip designs with an on-chip two-dimensional mesh network was developed and the power savings possible in a 70 nm process for two different design points: a circuit-switched ASIC or FPGA design, and a dynamic packet-switched tiled architecture were estimated. For circuit-switched networks, achievable power savings are 35-50% for a mesh with 1 mm links. The packet switched designs use multiplexing and signal encoding to reduce the number of link wires required, but the router overhead limits peak wire power savings to around 20% with optimal tile sizes of around 2 mm.","PeriodicalId":256018,"journal":{"name":"ISLPED '05. Proceedings of the 2005 International Symposium on Low Power Electronics and Design, 2005.","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"68","resultStr":"{\"title\":\"Replacing global wires with an on-chip network: a power analysis\",\"authors\":\"Seongmoo Heo, K. Asanović\",\"doi\":\"10.1145/1077603.1077692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores the power implications of replacing global chip wires with an on-chip network. The authors optimized the network links by varying repeater spacing, link pipelining, and voltage scaling, to significantly reduce the energy to send a bit across chip. An analytic model of large chip designs with an on-chip two-dimensional mesh network was developed and the power savings possible in a 70 nm process for two different design points: a circuit-switched ASIC or FPGA design, and a dynamic packet-switched tiled architecture were estimated. For circuit-switched networks, achievable power savings are 35-50% for a mesh with 1 mm links. The packet switched designs use multiplexing and signal encoding to reduce the number of link wires required, but the router overhead limits peak wire power savings to around 20% with optimal tile sizes of around 2 mm.\",\"PeriodicalId\":256018,\"journal\":{\"name\":\"ISLPED '05. Proceedings of the 2005 International Symposium on Low Power Electronics and Design, 2005.\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"68\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISLPED '05. Proceedings of the 2005 International Symposium on Low Power Electronics and Design, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1077603.1077692\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISLPED '05. Proceedings of the 2005 International Symposium on Low Power Electronics and Design, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1077603.1077692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Replacing global wires with an on-chip network: a power analysis
This paper explores the power implications of replacing global chip wires with an on-chip network. The authors optimized the network links by varying repeater spacing, link pipelining, and voltage scaling, to significantly reduce the energy to send a bit across chip. An analytic model of large chip designs with an on-chip two-dimensional mesh network was developed and the power savings possible in a 70 nm process for two different design points: a circuit-switched ASIC or FPGA design, and a dynamic packet-switched tiled architecture were estimated. For circuit-switched networks, achievable power savings are 35-50% for a mesh with 1 mm links. The packet switched designs use multiplexing and signal encoding to reduce the number of link wires required, but the router overhead limits peak wire power savings to around 20% with optimal tile sizes of around 2 mm.