基于改进HOG_SVM的车型分类

Peng Ge, Yanping Hu
{"title":"基于改进HOG_SVM的车型分类","authors":"Peng Ge, Yanping Hu","doi":"10.2991/ICMEIT-19.2019.102","DOIUrl":null,"url":null,"abstract":"There are few differences in the characteristics of vehicles and many interference factors in vehicle identification, especially in complex backgrounds. In order to improve the accuracy of image feature extraction and recognition in complex background, a vehicle-types recognition technology based on improved HOG_SVM is proposed in this paper. In order to obtain abundant vehicle identification information, we perform targeted image preprocessing methods such as grayscale stretching and Gaussian filtering on the original image to reduce background interference factors. The HOG feature is then introduced to obtain rich features of the image, and the SVM classifier in machine learning is trained at the output layer by multitasking learning of a large amount of tagged data. Different from the traditional method, the PCA dimension reduction process is used to speed up the recognition of the improved HOG feature, and the method of SVM is used to avoid the classifier from falling into the local minimum. In this paper, the public vehicle dataset is used as the classifier training dataset and test dataset, and the proposed method is verified by experiments.","PeriodicalId":223458,"journal":{"name":"Proceedings of the 3rd International Conference on Mechatronics Engineering and Information Technology (ICMEIT 2019)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Vehicle Type Classification based on Improved HOG_SVM\",\"authors\":\"Peng Ge, Yanping Hu\",\"doi\":\"10.2991/ICMEIT-19.2019.102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are few differences in the characteristics of vehicles and many interference factors in vehicle identification, especially in complex backgrounds. In order to improve the accuracy of image feature extraction and recognition in complex background, a vehicle-types recognition technology based on improved HOG_SVM is proposed in this paper. In order to obtain abundant vehicle identification information, we perform targeted image preprocessing methods such as grayscale stretching and Gaussian filtering on the original image to reduce background interference factors. The HOG feature is then introduced to obtain rich features of the image, and the SVM classifier in machine learning is trained at the output layer by multitasking learning of a large amount of tagged data. Different from the traditional method, the PCA dimension reduction process is used to speed up the recognition of the improved HOG feature, and the method of SVM is used to avoid the classifier from falling into the local minimum. In this paper, the public vehicle dataset is used as the classifier training dataset and test dataset, and the proposed method is verified by experiments.\",\"PeriodicalId\":223458,\"journal\":{\"name\":\"Proceedings of the 3rd International Conference on Mechatronics Engineering and Information Technology (ICMEIT 2019)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd International Conference on Mechatronics Engineering and Information Technology (ICMEIT 2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2991/ICMEIT-19.2019.102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Mechatronics Engineering and Information Technology (ICMEIT 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/ICMEIT-19.2019.102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

车辆特征差异不大,车辆识别中干扰因素较多,特别是在复杂背景下。为了提高复杂背景下图像特征提取和识别的精度,本文提出了一种基于改进HOG_SVM的车型识别技术。为了获得丰富的车辆识别信息,我们对原始图像进行了有针对性的图像预处理方法,如灰度拉伸和高斯滤波,以减少背景干扰因素。然后引入HOG特征获得图像的丰富特征,通过对大量标记数据的多任务学习,在输出层训练机器学习中的SVM分类器。与传统方法不同的是,采用PCA降维过程加快对改进HOG特征的识别,采用SVM方法避免分类器陷入局部最小值。本文以公共车辆数据集作为分类器的训练数据集和测试数据集,并通过实验验证了所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vehicle Type Classification based on Improved HOG_SVM
There are few differences in the characteristics of vehicles and many interference factors in vehicle identification, especially in complex backgrounds. In order to improve the accuracy of image feature extraction and recognition in complex background, a vehicle-types recognition technology based on improved HOG_SVM is proposed in this paper. In order to obtain abundant vehicle identification information, we perform targeted image preprocessing methods such as grayscale stretching and Gaussian filtering on the original image to reduce background interference factors. The HOG feature is then introduced to obtain rich features of the image, and the SVM classifier in machine learning is trained at the output layer by multitasking learning of a large amount of tagged data. Different from the traditional method, the PCA dimension reduction process is used to speed up the recognition of the improved HOG feature, and the method of SVM is used to avoid the classifier from falling into the local minimum. In this paper, the public vehicle dataset is used as the classifier training dataset and test dataset, and the proposed method is verified by experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信