通过分配3d轨迹来分离空中交通流

D. Gianazza, Nicolas Durand
{"title":"通过分配3d轨迹来分离空中交通流","authors":"D. Gianazza, Nicolas Durand","doi":"10.1109/DASC.2004.1391275","DOIUrl":null,"url":null,"abstract":"This paper introduces two algorithms which allocate optimal separated 3D-trajectories to the main traffic flows. The first approach is a 1 vs. n strategy which applies an A* algorithm iteratively to each flow. The second is a global approach using a genetic algorithm, applied to a population of trajectory sets. The algorithms are first tried on a toy problem, and then applied to real traffic data, using operational aircraft performances. The cumulated costs of the trajectory deviations are used to compare the two algorithms.","PeriodicalId":422463,"journal":{"name":"The 23rd Digital Avionics Systems Conference (IEEE Cat. No.04CH37576)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Separating air traffic flows by allocating 3D-trajectories\",\"authors\":\"D. Gianazza, Nicolas Durand\",\"doi\":\"10.1109/DASC.2004.1391275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces two algorithms which allocate optimal separated 3D-trajectories to the main traffic flows. The first approach is a 1 vs. n strategy which applies an A* algorithm iteratively to each flow. The second is a global approach using a genetic algorithm, applied to a population of trajectory sets. The algorithms are first tried on a toy problem, and then applied to real traffic data, using operational aircraft performances. The cumulated costs of the trajectory deviations are used to compare the two algorithms.\",\"PeriodicalId\":422463,\"journal\":{\"name\":\"The 23rd Digital Avionics Systems Conference (IEEE Cat. No.04CH37576)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 23rd Digital Avionics Systems Conference (IEEE Cat. No.04CH37576)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DASC.2004.1391275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 23rd Digital Avionics Systems Conference (IEEE Cat. No.04CH37576)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASC.2004.1391275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本文介绍了两种为主要交通流分配最优分离三维轨迹的算法。第一种方法是1 vs. n策略,它将a *算法迭代地应用于每个流。第二种是使用遗传算法的全局方法,应用于轨迹集的总体。这些算法首先在一个玩具问题上进行了试验,然后利用作战飞机的性能将其应用于真实的交通数据。用轨迹偏差的累积代价对两种算法进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Separating air traffic flows by allocating 3D-trajectories
This paper introduces two algorithms which allocate optimal separated 3D-trajectories to the main traffic flows. The first approach is a 1 vs. n strategy which applies an A* algorithm iteratively to each flow. The second is a global approach using a genetic algorithm, applied to a population of trajectory sets. The algorithms are first tried on a toy problem, and then applied to real traffic data, using operational aircraft performances. The cumulated costs of the trajectory deviations are used to compare the two algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信