具有抗不确定性鲁棒性的全局逆优化设计

Chen Yimei
{"title":"具有抗不确定性鲁棒性的全局逆优化设计","authors":"Chen Yimei","doi":"10.1109/CCCM.2008.329","DOIUrl":null,"url":null,"abstract":"In this paper, by employing the new characterization of control Lyapunov function, an inverse optimal controller is designed for the nonlinear system. The controller guarantee robustness against some input dynamic uncertainties and in the cost functional, the penalty on the control is not always quadratic. It is shown that the Lyapunov function guaranteeing closed-loop stability is a solution to the Hamilton-Jacobi-Bellman equation. With this method an inertia-wheel pendulum system is put forward to verify our conclusion. The control law for the pendulum system is designed to make the system global asymptotically stability on one of its equilibrium point, and computer simulations are given for illustration.","PeriodicalId":326534,"journal":{"name":"2008 ISECS International Colloquium on Computing, Communication, Control, and Management","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Global Inverse Optimal Design with Robustness to Some Uncertainties\",\"authors\":\"Chen Yimei\",\"doi\":\"10.1109/CCCM.2008.329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, by employing the new characterization of control Lyapunov function, an inverse optimal controller is designed for the nonlinear system. The controller guarantee robustness against some input dynamic uncertainties and in the cost functional, the penalty on the control is not always quadratic. It is shown that the Lyapunov function guaranteeing closed-loop stability is a solution to the Hamilton-Jacobi-Bellman equation. With this method an inertia-wheel pendulum system is put forward to verify our conclusion. The control law for the pendulum system is designed to make the system global asymptotically stability on one of its equilibrium point, and computer simulations are given for illustration.\",\"PeriodicalId\":326534,\"journal\":{\"name\":\"2008 ISECS International Colloquium on Computing, Communication, Control, and Management\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 ISECS International Colloquium on Computing, Communication, Control, and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCCM.2008.329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 ISECS International Colloquium on Computing, Communication, Control, and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCCM.2008.329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用控制李雅普诺夫函数的新表征,设计了非线性系统的逆最优控制器。该控制器保证了对某些输入动态不确定性的鲁棒性,并且在代价函数中,对控制器的惩罚并不总是二次的。证明了保证闭环稳定性的Lyapunov函数是Hamilton-Jacobi-Bellman方程的一个解。用该方法提出了一个惯性轮摆系统来验证我们的结论。为了使系统在某一个平衡点上全局渐近稳定,设计了摆系统的控制律,并进行了计算机仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Global Inverse Optimal Design with Robustness to Some Uncertainties
In this paper, by employing the new characterization of control Lyapunov function, an inverse optimal controller is designed for the nonlinear system. The controller guarantee robustness against some input dynamic uncertainties and in the cost functional, the penalty on the control is not always quadratic. It is shown that the Lyapunov function guaranteeing closed-loop stability is a solution to the Hamilton-Jacobi-Bellman equation. With this method an inertia-wheel pendulum system is put forward to verify our conclusion. The control law for the pendulum system is designed to make the system global asymptotically stability on one of its equilibrium point, and computer simulations are given for illustration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信