电动汽车混合动力系统配电策略

Xia Chen, Xinru Wang, Jinying Li, Di Wang, Yang Gao
{"title":"电动汽车混合动力系统配电策略","authors":"Xia Chen, Xinru Wang, Jinying Li, Di Wang, Yang Gao","doi":"10.2991/ICMEIT-19.2019.116","DOIUrl":null,"url":null,"abstract":"Abstract. Aiming at the load power fluctuates greatly during the driving process of the electric vehicles, a large load current is required, it is difficult to meet the load demand by the lithium battery alone, so the super-capacitor is introduced. In order to give full play to advantages of both, and to reduce the transient high current fluctuation of lithium battery, a power allocation strategy based on adaptive frequency is proposed. The power supply current, super-capacitor and bus voltage are controlled with double closed-loop control, and the filter time constant is dynamically adjusted according to the state of charge and load requirements of the super-capacitor, the battery bears the low-frequency component of the load current, and the super-capacitor provides the residual component, therefore, the charge and discharge current of the battery can be reduced and reducing the large current fluctuation. The Matlab/Simulink the results show that the method fully utilizes the super-capacitor smooth load fluctuation, which effectively reduces the charge and discharge current of the lithium battery and reduces the fluctuation range, thus prolonging the service life.","PeriodicalId":223458,"journal":{"name":"Proceedings of the 3rd International Conference on Mechatronics Engineering and Information Technology (ICMEIT 2019)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Power Distribution Strategy for Electric Vehicle Hybrid Power System\",\"authors\":\"Xia Chen, Xinru Wang, Jinying Li, Di Wang, Yang Gao\",\"doi\":\"10.2991/ICMEIT-19.2019.116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Aiming at the load power fluctuates greatly during the driving process of the electric vehicles, a large load current is required, it is difficult to meet the load demand by the lithium battery alone, so the super-capacitor is introduced. In order to give full play to advantages of both, and to reduce the transient high current fluctuation of lithium battery, a power allocation strategy based on adaptive frequency is proposed. The power supply current, super-capacitor and bus voltage are controlled with double closed-loop control, and the filter time constant is dynamically adjusted according to the state of charge and load requirements of the super-capacitor, the battery bears the low-frequency component of the load current, and the super-capacitor provides the residual component, therefore, the charge and discharge current of the battery can be reduced and reducing the large current fluctuation. The Matlab/Simulink the results show that the method fully utilizes the super-capacitor smooth load fluctuation, which effectively reduces the charge and discharge current of the lithium battery and reduces the fluctuation range, thus prolonging the service life.\",\"PeriodicalId\":223458,\"journal\":{\"name\":\"Proceedings of the 3rd International Conference on Mechatronics Engineering and Information Technology (ICMEIT 2019)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd International Conference on Mechatronics Engineering and Information Technology (ICMEIT 2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2991/ICMEIT-19.2019.116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Mechatronics Engineering and Information Technology (ICMEIT 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/ICMEIT-19.2019.116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要针对电动汽车行驶过程中负载功率波动较大,需要较大的负载电流,单靠锂电池难以满足负载需求,因此引入了超级电容器。为了充分发挥两者的优势,减小锂电池瞬态大电流波动,提出了一种基于自适应频率的功率分配策略。采用双闭环控制对电源电流、超级电容和母线电压进行控制,并根据超级电容的充电状态和负载要求动态调整滤波时间常数,电池承担负载电流的低频分量,超级电容提供剩余分量,因此可以减小电池的充放电电流,减少大电流波动。Matlab/Simulink仿真结果表明,该方法充分利用了超级电容平稳负载波动,有效减小了锂电池的充放电电流,减小了波动范围,从而延长了使用寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Power Distribution Strategy for Electric Vehicle Hybrid Power System
Abstract. Aiming at the load power fluctuates greatly during the driving process of the electric vehicles, a large load current is required, it is difficult to meet the load demand by the lithium battery alone, so the super-capacitor is introduced. In order to give full play to advantages of both, and to reduce the transient high current fluctuation of lithium battery, a power allocation strategy based on adaptive frequency is proposed. The power supply current, super-capacitor and bus voltage are controlled with double closed-loop control, and the filter time constant is dynamically adjusted according to the state of charge and load requirements of the super-capacitor, the battery bears the low-frequency component of the load current, and the super-capacitor provides the residual component, therefore, the charge and discharge current of the battery can be reduced and reducing the large current fluctuation. The Matlab/Simulink the results show that the method fully utilizes the super-capacitor smooth load fluctuation, which effectively reduces the charge and discharge current of the lithium battery and reduces the fluctuation range, thus prolonging the service life.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信