求解非对称正定线性系统的半共轭梯度法的性质

Na Huang, Yuhong Dai, D. Orban, M. Saunders
{"title":"求解非对称正定线性系统的半共轭梯度法的性质","authors":"Na Huang, Yuhong Dai, D. Orban, M. Saunders","doi":"10.1080/10556788.2023.2189716","DOIUrl":null,"url":null,"abstract":"The conjugate gradient (CG) method is a classic Krylov subspace method for solving symmetric positive definite linear systems. We analyze an analogous semi-conjugate gradient (SCG) method, a special case of the existing semi-conjugate direction (SCD) methods, for unsymmetric positive definite linear systems. Unlike CG, SCG requires the solution of a lower triangular linear system to produce each semi-conjugate direction. We prove that SCG is theoretically equivalent to the full orthogonalization method (FOM), which is based on the Arnoldi process and converges in a finite number of steps. Because SCG's triangular system increases in size each iteration, Dai and Yuan [Study on semi-conjugate direction methods for non-symmetric systems, Int. J. Numer. Meth. Eng. 60(8) (2004), pp. 1383–1399] proposed a sliding window implementation (SWI) to improve efficiency. We show that the directions produced are still locally semi-conjugate. A counter-example illustrates that SWI is different from the direct incomplete orthogonalization method (DIOM), which is FOM with a sliding window. Numerical experiments from the convection-diffusion equation and other applications show that SCG is robust and that the sliding window implementation SWI allows SCG to solve large systems efficiently.","PeriodicalId":124811,"journal":{"name":"Optimization Methods and Software","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Properties of semi-conjugate gradient methods for solving unsymmetric positive definite linear systems\",\"authors\":\"Na Huang, Yuhong Dai, D. Orban, M. Saunders\",\"doi\":\"10.1080/10556788.2023.2189716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The conjugate gradient (CG) method is a classic Krylov subspace method for solving symmetric positive definite linear systems. We analyze an analogous semi-conjugate gradient (SCG) method, a special case of the existing semi-conjugate direction (SCD) methods, for unsymmetric positive definite linear systems. Unlike CG, SCG requires the solution of a lower triangular linear system to produce each semi-conjugate direction. We prove that SCG is theoretically equivalent to the full orthogonalization method (FOM), which is based on the Arnoldi process and converges in a finite number of steps. Because SCG's triangular system increases in size each iteration, Dai and Yuan [Study on semi-conjugate direction methods for non-symmetric systems, Int. J. Numer. Meth. Eng. 60(8) (2004), pp. 1383–1399] proposed a sliding window implementation (SWI) to improve efficiency. We show that the directions produced are still locally semi-conjugate. A counter-example illustrates that SWI is different from the direct incomplete orthogonalization method (DIOM), which is FOM with a sliding window. Numerical experiments from the convection-diffusion equation and other applications show that SCG is robust and that the sliding window implementation SWI allows SCG to solve large systems efficiently.\",\"PeriodicalId\":124811,\"journal\":{\"name\":\"Optimization Methods and Software\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimization Methods and Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10556788.2023.2189716\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods and Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10556788.2023.2189716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

共轭梯度法(CG)是求解对称正定线性系统的经典Krylov子空间方法。本文分析了一类非对称正定线性系统的类似半共轭梯度法(SCG),它是现有半共轭方向法(SCD)的一种特例。与CG不同,SCG需要解一个下三角形线性系统来产生每个半共轭方向。我们证明了SCG在理论上等价于基于Arnoldi过程并在有限步内收敛的完全正交化方法(FOM)。由于SCG的三角系统每次迭代都会增大,Dai和Yuan[非对称系统的半共轭方向方法研究,[j]。j .号码。冰毒。Eng. 60(8) (2004), pp. 1383-1399]提出了一种滑动窗口实现(SWI)来提高效率。我们证明了产生的方向仍然是局部半共轭的。一个反例说明SWI不同于直接不完全正交方法(DIOM), DIOM是带滑动窗口的FOM。对流扩散方程和其他应用的数值实验表明,SCG具有鲁棒性,滑动窗口实现SWI使SCG能够有效地求解大型系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Properties of semi-conjugate gradient methods for solving unsymmetric positive definite linear systems
The conjugate gradient (CG) method is a classic Krylov subspace method for solving symmetric positive definite linear systems. We analyze an analogous semi-conjugate gradient (SCG) method, a special case of the existing semi-conjugate direction (SCD) methods, for unsymmetric positive definite linear systems. Unlike CG, SCG requires the solution of a lower triangular linear system to produce each semi-conjugate direction. We prove that SCG is theoretically equivalent to the full orthogonalization method (FOM), which is based on the Arnoldi process and converges in a finite number of steps. Because SCG's triangular system increases in size each iteration, Dai and Yuan [Study on semi-conjugate direction methods for non-symmetric systems, Int. J. Numer. Meth. Eng. 60(8) (2004), pp. 1383–1399] proposed a sliding window implementation (SWI) to improve efficiency. We show that the directions produced are still locally semi-conjugate. A counter-example illustrates that SWI is different from the direct incomplete orthogonalization method (DIOM), which is FOM with a sliding window. Numerical experiments from the convection-diffusion equation and other applications show that SCG is robust and that the sliding window implementation SWI allows SCG to solve large systems efficiently.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信