小型gem的输入感知自适应调优框架

Jianyu Yao, Boqian Shi, Chunyang Xiang, Haipeng Jia, Chendi Li, Hang Cao, Yunquan Zhang
{"title":"小型gem的输入感知自适应调优框架","authors":"Jianyu Yao, Boqian Shi, Chunyang Xiang, Haipeng Jia, Chendi Li, Hang Cao, Yunquan Zhang","doi":"10.1109/ICPADS53394.2021.00118","DOIUrl":null,"url":null,"abstract":"GEMM with the small size of input matrices is becoming widely used in many fields like HPC and machine learning. Although many famous BLAS libraries already supported small GEMM, they cannot achieve near-optimal performance. This is because the costs of pack operations are high and frequent boundary processing cannot be neglected. This paper proposes an input-aware adaptive tuning framework(IAAT) for small GEMM to overcome the performance bottlenecks in state-of-the-art implementations. IAAT consists of two stages, the install-time stage and the run-time stage. In the run-time stage, IAAT tiles matrices into blocks to alleviate boundary processing. This stage utilizes an input-aware adaptive tile algorithm and plays the role of runtime tuning. In the install-time stage, IAAT auto-generates hundreds of kernels of different sizes to remove pack operations. Finally, IAAT finishes the computation of small GEMM by invoking different kernels, which corresponds to the size of blocks. The experimental results show that IAAT gains better performance than other BLAS libraries on ARMv8 platform.","PeriodicalId":309508,"journal":{"name":"2021 IEEE 27th International Conference on Parallel and Distributed Systems (ICPADS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"IAAT: A Input-Aware Adaptive Tuning framework for Small GEMM\",\"authors\":\"Jianyu Yao, Boqian Shi, Chunyang Xiang, Haipeng Jia, Chendi Li, Hang Cao, Yunquan Zhang\",\"doi\":\"10.1109/ICPADS53394.2021.00118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"GEMM with the small size of input matrices is becoming widely used in many fields like HPC and machine learning. Although many famous BLAS libraries already supported small GEMM, they cannot achieve near-optimal performance. This is because the costs of pack operations are high and frequent boundary processing cannot be neglected. This paper proposes an input-aware adaptive tuning framework(IAAT) for small GEMM to overcome the performance bottlenecks in state-of-the-art implementations. IAAT consists of two stages, the install-time stage and the run-time stage. In the run-time stage, IAAT tiles matrices into blocks to alleviate boundary processing. This stage utilizes an input-aware adaptive tile algorithm and plays the role of runtime tuning. In the install-time stage, IAAT auto-generates hundreds of kernels of different sizes to remove pack operations. Finally, IAAT finishes the computation of small GEMM by invoking different kernels, which corresponds to the size of blocks. The experimental results show that IAAT gains better performance than other BLAS libraries on ARMv8 platform.\",\"PeriodicalId\":309508,\"journal\":{\"name\":\"2021 IEEE 27th International Conference on Parallel and Distributed Systems (ICPADS)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 27th International Conference on Parallel and Distributed Systems (ICPADS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPADS53394.2021.00118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 27th International Conference on Parallel and Distributed Systems (ICPADS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPADS53394.2021.00118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由于输入矩阵的小尺寸,GEMM在高性能计算和机器学习等领域得到了广泛的应用。尽管许多著名的BLAS库已经支持小型gem,但它们无法实现近乎最佳的性能。这是因为包装操作的成本很高,频繁的边界处理不能忽视。本文提出了一种用于小型gem的输入感知自适应调优框架(IAAT),以克服当前实现中的性能瓶颈。IAAT包括两个阶段,安装阶段和运行阶段。在运行阶段,IAAT将矩阵划分为块以减轻边界处理。这个阶段利用了一个输入感知的自适应平铺算法,并扮演了运行时调优的角色。在安装阶段,IAAT自动生成数百个不同大小的内核来删除包操作。最后,IAAT通过调用不同的内核来完成小gem的计算,这些内核对应于块的大小。实验结果表明,IAAT在ARMv8平台上获得了比其他BLAS库更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IAAT: A Input-Aware Adaptive Tuning framework for Small GEMM
GEMM with the small size of input matrices is becoming widely used in many fields like HPC and machine learning. Although many famous BLAS libraries already supported small GEMM, they cannot achieve near-optimal performance. This is because the costs of pack operations are high and frequent boundary processing cannot be neglected. This paper proposes an input-aware adaptive tuning framework(IAAT) for small GEMM to overcome the performance bottlenecks in state-of-the-art implementations. IAAT consists of two stages, the install-time stage and the run-time stage. In the run-time stage, IAAT tiles matrices into blocks to alleviate boundary processing. This stage utilizes an input-aware adaptive tile algorithm and plays the role of runtime tuning. In the install-time stage, IAAT auto-generates hundreds of kernels of different sizes to remove pack operations. Finally, IAAT finishes the computation of small GEMM by invoking different kernels, which corresponds to the size of blocks. The experimental results show that IAAT gains better performance than other BLAS libraries on ARMv8 platform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信