基于K最近邻估计的非线性判别分析

Xuezhen Li, Takio Kurita
{"title":"基于K最近邻估计的非线性判别分析","authors":"Xuezhen Li, Takio Kurita","doi":"10.1109/FCV.2015.7103744","DOIUrl":null,"url":null,"abstract":"Fishers linear discriminant analysis (FLDA) is one of the well-known methods to extract the best features for multi-class discrimination. Recently Kernel discriminant analysis (KDA) has been successfully applied in many applications. KDA is one of the nonlinear extensions of FLDA and construct nonlinear discriminant mapping by using kernel functions. Otsu derived the optimum nonlinear discriminant analysis (ONDA) by assuming the underlying probabilities similar with the Bayesian decision theory. In this paper, we propose to construct an approximation of the optimum nonlinear discriminant mapping based on Otsu's theory of the nonlinear discriminant analysis. We use k nearest neighbor(k-NN) to estimate Bayesian posterior probabilities. In experiment, we show classification performance of the proposed nonlinear discriminant analysis for several modified k-NN.","PeriodicalId":424974,"journal":{"name":"2015 21st Korea-Japan Joint Workshop on Frontiers of Computer Vision (FCV)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Nonlinear discriminant analysis using K nearest neighbor estimation\",\"authors\":\"Xuezhen Li, Takio Kurita\",\"doi\":\"10.1109/FCV.2015.7103744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fishers linear discriminant analysis (FLDA) is one of the well-known methods to extract the best features for multi-class discrimination. Recently Kernel discriminant analysis (KDA) has been successfully applied in many applications. KDA is one of the nonlinear extensions of FLDA and construct nonlinear discriminant mapping by using kernel functions. Otsu derived the optimum nonlinear discriminant analysis (ONDA) by assuming the underlying probabilities similar with the Bayesian decision theory. In this paper, we propose to construct an approximation of the optimum nonlinear discriminant mapping based on Otsu's theory of the nonlinear discriminant analysis. We use k nearest neighbor(k-NN) to estimate Bayesian posterior probabilities. In experiment, we show classification performance of the proposed nonlinear discriminant analysis for several modified k-NN.\",\"PeriodicalId\":424974,\"journal\":{\"name\":\"2015 21st Korea-Japan Joint Workshop on Frontiers of Computer Vision (FCV)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 21st Korea-Japan Joint Workshop on Frontiers of Computer Vision (FCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FCV.2015.7103744\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 21st Korea-Japan Joint Workshop on Frontiers of Computer Vision (FCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCV.2015.7103744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

fisher线性判别分析(FLDA)是一种提取最佳特征进行多类判别的方法。近年来,核判别分析(KDA)在许多领域得到了成功的应用。KDA是FLDA的非线性扩展之一,利用核函数构造非线性判别映射。Otsu通过假设与贝叶斯决策理论相似的潜在概率,推导出最优非线性判别分析(ONDA)。本文基于Otsu的非线性判别分析理论,构造了最优非线性判别映射的近似。我们使用k近邻(k- nn)来估计贝叶斯后验概率。在实验中,我们展示了所提出的非线性判别分析对几个改进的k-NN的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear discriminant analysis using K nearest neighbor estimation
Fishers linear discriminant analysis (FLDA) is one of the well-known methods to extract the best features for multi-class discrimination. Recently Kernel discriminant analysis (KDA) has been successfully applied in many applications. KDA is one of the nonlinear extensions of FLDA and construct nonlinear discriminant mapping by using kernel functions. Otsu derived the optimum nonlinear discriminant analysis (ONDA) by assuming the underlying probabilities similar with the Bayesian decision theory. In this paper, we propose to construct an approximation of the optimum nonlinear discriminant mapping based on Otsu's theory of the nonlinear discriminant analysis. We use k nearest neighbor(k-NN) to estimate Bayesian posterior probabilities. In experiment, we show classification performance of the proposed nonlinear discriminant analysis for several modified k-NN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信