Zhaolong Ning, Weigang Hou, Xiping Hu, Xiaoxue Gong
{"title":"一种云支持的过程制造控制决策cps方法:3D ONoC","authors":"Zhaolong Ning, Weigang Hou, Xiping Hu, Xiaoxue Gong","doi":"10.1109/COASE.2017.8256147","DOIUrl":null,"url":null,"abstract":"The Cyber-Physical System (CPS) concept is now attracting attention in systems engineering, and it is being applied to a fully automated factory control in processes such as semiconductor fabrication. In this paper, we propose a novel control decision structure for process manufacturing, designated as the 3D Optical Network-on-Chip (ONoC) multi-core system, based on the cloud-supported CPS concept. We first construct a task graph — which includes interconnected Virtual Machines (VMs)—to represent the interaction between industrial-physical processes and cyber states. Given the task graph, the control decision process becomes into the problem of the on-chip VM placement. We then design a highly reliable on-chip VM placement scheduling to find the optimal control strategy while guaranteeing the reliability of the 3D ONoC structure. The simulation results demonstrate that our scheme achieves a higher reliability of the 3D ONoC structure when we make the control decision for process manufacturing.","PeriodicalId":445441,"journal":{"name":"2017 13th IEEE Conference on Automation Science and Engineering (CASE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A cloud-supported cps approach to control decision of process manufacturing: 3D ONoC\",\"authors\":\"Zhaolong Ning, Weigang Hou, Xiping Hu, Xiaoxue Gong\",\"doi\":\"10.1109/COASE.2017.8256147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Cyber-Physical System (CPS) concept is now attracting attention in systems engineering, and it is being applied to a fully automated factory control in processes such as semiconductor fabrication. In this paper, we propose a novel control decision structure for process manufacturing, designated as the 3D Optical Network-on-Chip (ONoC) multi-core system, based on the cloud-supported CPS concept. We first construct a task graph — which includes interconnected Virtual Machines (VMs)—to represent the interaction between industrial-physical processes and cyber states. Given the task graph, the control decision process becomes into the problem of the on-chip VM placement. We then design a highly reliable on-chip VM placement scheduling to find the optimal control strategy while guaranteeing the reliability of the 3D ONoC structure. The simulation results demonstrate that our scheme achieves a higher reliability of the 3D ONoC structure when we make the control decision for process manufacturing.\",\"PeriodicalId\":445441,\"journal\":{\"name\":\"2017 13th IEEE Conference on Automation Science and Engineering (CASE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 13th IEEE Conference on Automation Science and Engineering (CASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COASE.2017.8256147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th IEEE Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2017.8256147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A cloud-supported cps approach to control decision of process manufacturing: 3D ONoC
The Cyber-Physical System (CPS) concept is now attracting attention in systems engineering, and it is being applied to a fully automated factory control in processes such as semiconductor fabrication. In this paper, we propose a novel control decision structure for process manufacturing, designated as the 3D Optical Network-on-Chip (ONoC) multi-core system, based on the cloud-supported CPS concept. We first construct a task graph — which includes interconnected Virtual Machines (VMs)—to represent the interaction between industrial-physical processes and cyber states. Given the task graph, the control decision process becomes into the problem of the on-chip VM placement. We then design a highly reliable on-chip VM placement scheduling to find the optimal control strategy while guaranteeing the reliability of the 3D ONoC structure. The simulation results demonstrate that our scheme achieves a higher reliability of the 3D ONoC structure when we make the control decision for process manufacturing.