利用FIR神经网络对超声图像进行分割

Nima Torbati, A. Ayatollahi, A. Kermani
{"title":"利用FIR神经网络对超声图像进行分割","authors":"Nima Torbati, A. Ayatollahi, A. Kermani","doi":"10.1109/IRANIANCEE.2013.6599759","DOIUrl":null,"url":null,"abstract":"Ultrasound (US) image segmentation is a difficult task because of its heavy speckle noise, low quality and blurry boundaries. In this paper, a new neural network based method is proposed for ultrasound images segmentation. A modified self organizing map (SOM) network, named finite impulse response SOM (FIR-SOM), is utilized to segment ultrasound images. A two dimensional (2D) discrete wavelet transform (DWT) is used to build the input feature space of the network. Experimental results show that FIR-SOM discovers the pattern of the input image properly and is robust against noise. Segmentation results of breast ultrasound images (BUS) demonstrate that there is a strong correlation between tumor region selected by a physician and the tumor region segmented by our proposed method.","PeriodicalId":383315,"journal":{"name":"2013 21st Iranian Conference on Electrical Engineering (ICEE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Ultrasound image segmentation by using a FIR neural network\",\"authors\":\"Nima Torbati, A. Ayatollahi, A. Kermani\",\"doi\":\"10.1109/IRANIANCEE.2013.6599759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultrasound (US) image segmentation is a difficult task because of its heavy speckle noise, low quality and blurry boundaries. In this paper, a new neural network based method is proposed for ultrasound images segmentation. A modified self organizing map (SOM) network, named finite impulse response SOM (FIR-SOM), is utilized to segment ultrasound images. A two dimensional (2D) discrete wavelet transform (DWT) is used to build the input feature space of the network. Experimental results show that FIR-SOM discovers the pattern of the input image properly and is robust against noise. Segmentation results of breast ultrasound images (BUS) demonstrate that there is a strong correlation between tumor region selected by a physician and the tumor region segmented by our proposed method.\",\"PeriodicalId\":383315,\"journal\":{\"name\":\"2013 21st Iranian Conference on Electrical Engineering (ICEE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 21st Iranian Conference on Electrical Engineering (ICEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRANIANCEE.2013.6599759\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 21st Iranian Conference on Electrical Engineering (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRANIANCEE.2013.6599759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

超声图像分割因其散斑噪声大、图像质量低、图像边界模糊等特点而成为一项难点问题。本文提出了一种新的基于神经网络的超声图像分割方法。利用一种改进的自组织映射网络(SOM),即有限脉冲响应SOM (FIR-SOM),对超声图像进行分割。使用二维离散小波变换(DWT)构建网络的输入特征空间。实验结果表明,FIR-SOM能较好地发现输入图像的模式,对噪声具有较强的鲁棒性。乳房超声图像(BUS)的分割结果表明,医生选择的肿瘤区域与我们所提出的方法分割的肿瘤区域之间存在很强的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultrasound image segmentation by using a FIR neural network
Ultrasound (US) image segmentation is a difficult task because of its heavy speckle noise, low quality and blurry boundaries. In this paper, a new neural network based method is proposed for ultrasound images segmentation. A modified self organizing map (SOM) network, named finite impulse response SOM (FIR-SOM), is utilized to segment ultrasound images. A two dimensional (2D) discrete wavelet transform (DWT) is used to build the input feature space of the network. Experimental results show that FIR-SOM discovers the pattern of the input image properly and is robust against noise. Segmentation results of breast ultrasound images (BUS) demonstrate that there is a strong correlation between tumor region selected by a physician and the tumor region segmented by our proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信