自组织蜂窝网络方法在5G网络中的应用

H. Fourati, Rihab Maaloul, L. Chaari
{"title":"自组织蜂窝网络方法在5G网络中的应用","authors":"H. Fourati, Rihab Maaloul, L. Chaari","doi":"10.1109/GIIS48668.2019.9044964","DOIUrl":null,"url":null,"abstract":"SON is an interesting topic in today’s cellular networks. Indeed, heterogeneous networks, ultra-dense deployments and diverse Radio Access Technologies in the same operating area in 5G systems require functions enabling networks to configure, optimize and heal itself. These automated functions will undoubtedly simplify the operational tasks as well as improve network flexibility. We give a special focus on a set of useful use cases, as described by 3rd Generation Partnership Project (3GPP). In this paper, we review and discuss the basic concepts of SON. Furthermore, we provide a new taxonomy for SON use cases and describe their underlying Machine Learning techniques.","PeriodicalId":165839,"journal":{"name":"2019 Global Information Infrastructure and Networking Symposium (GIIS)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Self-Organizing Cellular Network Approaches Applied to 5G Networks\",\"authors\":\"H. Fourati, Rihab Maaloul, L. Chaari\",\"doi\":\"10.1109/GIIS48668.2019.9044964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SON is an interesting topic in today’s cellular networks. Indeed, heterogeneous networks, ultra-dense deployments and diverse Radio Access Technologies in the same operating area in 5G systems require functions enabling networks to configure, optimize and heal itself. These automated functions will undoubtedly simplify the operational tasks as well as improve network flexibility. We give a special focus on a set of useful use cases, as described by 3rd Generation Partnership Project (3GPP). In this paper, we review and discuss the basic concepts of SON. Furthermore, we provide a new taxonomy for SON use cases and describe their underlying Machine Learning techniques.\",\"PeriodicalId\":165839,\"journal\":{\"name\":\"2019 Global Information Infrastructure and Networking Symposium (GIIS)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Global Information Infrastructure and Networking Symposium (GIIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GIIS48668.2019.9044964\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Global Information Infrastructure and Networking Symposium (GIIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GIIS48668.2019.9044964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在当今的蜂窝网络中,SON是一个有趣的话题。事实上,在5G系统的同一操作区域中,异构网络、超密集部署和多样化的无线接入技术需要使网络能够自我配置、优化和修复的功能。这些自动化功能无疑将简化操作任务,并提高网络的灵活性。我们特别关注一组有用的用例,正如第三代合作伙伴项目(3GPP)所描述的那样。在本文中,我们回顾和讨论了SON的基本概念。此外,我们为SON用例提供了一种新的分类法,并描述了它们的底层机器学习技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-Organizing Cellular Network Approaches Applied to 5G Networks
SON is an interesting topic in today’s cellular networks. Indeed, heterogeneous networks, ultra-dense deployments and diverse Radio Access Technologies in the same operating area in 5G systems require functions enabling networks to configure, optimize and heal itself. These automated functions will undoubtedly simplify the operational tasks as well as improve network flexibility. We give a special focus on a set of useful use cases, as described by 3rd Generation Partnership Project (3GPP). In this paper, we review and discuss the basic concepts of SON. Furthermore, we provide a new taxonomy for SON use cases and describe their underlying Machine Learning techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信