不规则应用程序的迁移执行案例

P. Kogge, Shannon K. Kuntz
{"title":"不规则应用程序的迁移执行案例","authors":"P. Kogge, Shannon K. Kuntz","doi":"10.1145/3149704.3149770","DOIUrl":null,"url":null,"abstract":"Modern supercomputers have millions of cores, each capable of executing one or more threads of program execution. In these computers the site of execution for program threads rarely, if ever, changes from the node in which they were born. This paper discusses the advantages that may accrue when thread states migrate freely from node to node, especially when migration is managed by hardware without requiring software intervention. Emphasis is on supporting the growing classes of algorithms where there is significant sparsity, irregularity, and lack of locality in the memory reference patterns. Evidence is drawn from reformulation of several kernels into a migrating thread context approximating that of an emerging architecture with such capabilities.","PeriodicalId":292798,"journal":{"name":"Proceedings of the Seventh Workshop on Irregular Applications: Architectures and Algorithms","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A Case for Migrating Execution for Irregular Applications\",\"authors\":\"P. Kogge, Shannon K. Kuntz\",\"doi\":\"10.1145/3149704.3149770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern supercomputers have millions of cores, each capable of executing one or more threads of program execution. In these computers the site of execution for program threads rarely, if ever, changes from the node in which they were born. This paper discusses the advantages that may accrue when thread states migrate freely from node to node, especially when migration is managed by hardware without requiring software intervention. Emphasis is on supporting the growing classes of algorithms where there is significant sparsity, irregularity, and lack of locality in the memory reference patterns. Evidence is drawn from reformulation of several kernels into a migrating thread context approximating that of an emerging architecture with such capabilities.\",\"PeriodicalId\":292798,\"journal\":{\"name\":\"Proceedings of the Seventh Workshop on Irregular Applications: Architectures and Algorithms\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Seventh Workshop on Irregular Applications: Architectures and Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3149704.3149770\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Seventh Workshop on Irregular Applications: Architectures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3149704.3149770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

现代超级计算机有数百万个核心,每个核心能够执行一个或多个程序执行线程。在这些计算机中,程序线程的执行位置很少(如果有的话)从它们诞生的节点改变。本文讨论了当线程状态从一个节点自由迁移到另一个节点时可能产生的优势,特别是当迁移由硬件管理而不需要软件干预时。重点是支持不断增长的算法类,这些算法类在内存引用模式中存在显著的稀疏性、不规则性和局部性缺乏。证据来自将几个内核重新表述为一个迁移线程上下文,该上下文近似于具有此类功能的新兴体系结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Case for Migrating Execution for Irregular Applications
Modern supercomputers have millions of cores, each capable of executing one or more threads of program execution. In these computers the site of execution for program threads rarely, if ever, changes from the node in which they were born. This paper discusses the advantages that may accrue when thread states migrate freely from node to node, especially when migration is managed by hardware without requiring software intervention. Emphasis is on supporting the growing classes of algorithms where there is significant sparsity, irregularity, and lack of locality in the memory reference patterns. Evidence is drawn from reformulation of several kernels into a migrating thread context approximating that of an emerging architecture with such capabilities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信