基于全局指针的中国肺结节病历实体关系提取方法

Shuheng Tao, Y. Chen, Jiping Wang
{"title":"基于全局指针的中国肺结节病历实体关系提取方法","authors":"Shuheng Tao, Y. Chen, Jiping Wang","doi":"10.1109/AICT55583.2022.10013614","DOIUrl":null,"url":null,"abstract":"To facilitate research on pulmonary nodule medical records for physicians, this paper proposes an entity relation extraction model which bases on Global Pointer, using embedded pre-trained language model RoFormer as upstream encoder, Exponential Moving Average optimization method and Fast Gradient Method for adversarial training. The proposed model can also analyze the parent-child relations on contextual semantics, and then process them into structured data. The experimental results show that this model improves the extraction effect significantly compared with the traditional methods, and the F1 value can reach 86.2% in the Chinese pulmonary nodule medical records dataset.","PeriodicalId":441475,"journal":{"name":"2022 IEEE 16th International Conference on Application of Information and Communication Technologies (AICT)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Global Pointer based Entity Relation Extraction Method for Chinese Pulmonary Nodule Medical Records\",\"authors\":\"Shuheng Tao, Y. Chen, Jiping Wang\",\"doi\":\"10.1109/AICT55583.2022.10013614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To facilitate research on pulmonary nodule medical records for physicians, this paper proposes an entity relation extraction model which bases on Global Pointer, using embedded pre-trained language model RoFormer as upstream encoder, Exponential Moving Average optimization method and Fast Gradient Method for adversarial training. The proposed model can also analyze the parent-child relations on contextual semantics, and then process them into structured data. The experimental results show that this model improves the extraction effect significantly compared with the traditional methods, and the F1 value can reach 86.2% in the Chinese pulmonary nodule medical records dataset.\",\"PeriodicalId\":441475,\"journal\":{\"name\":\"2022 IEEE 16th International Conference on Application of Information and Communication Technologies (AICT)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 16th International Conference on Application of Information and Communication Technologies (AICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICT55583.2022.10013614\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 16th International Conference on Application of Information and Communication Technologies (AICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICT55583.2022.10013614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了方便医生对肺结节病历的研究,本文提出了一种基于Global Pointer的实体关系提取模型,采用嵌入式预训练语言模型RoFormer作为上游编码器,采用指数移动平均优化方法和快速梯度方法进行对抗性训练。该模型还可以在上下文语义上分析亲子关系,并将其处理成结构化数据。实验结果表明,与传统方法相比,该模型显著提高了提取效果,在中国肺结节病历数据集中F1值可达86.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Global Pointer based Entity Relation Extraction Method for Chinese Pulmonary Nodule Medical Records
To facilitate research on pulmonary nodule medical records for physicians, this paper proposes an entity relation extraction model which bases on Global Pointer, using embedded pre-trained language model RoFormer as upstream encoder, Exponential Moving Average optimization method and Fast Gradient Method for adversarial training. The proposed model can also analyze the parent-child relations on contextual semantics, and then process them into structured data. The experimental results show that this model improves the extraction effect significantly compared with the traditional methods, and the F1 value can reach 86.2% in the Chinese pulmonary nodule medical records dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信