{"title":"铣削过程的研究,假设切削力的估计","authors":"V. Gylienė, V. Ostaševičius, A. Sergent","doi":"10.1109/ISAM.2011.5942363","DOIUrl":null,"url":null,"abstract":"The paper presents results of research of a milling process, which include experimental studies associated with determination of cutting forces. Cutting depth is a parameter that was varied in the course of the measurements. Analytical models were constructed for cutting force prediction on the basis of experimental data obtained for tool geometry, cross-section of removed material layer and cutting regimes. A tool with two inserts was used for milling experiments: during cutting process one insert was removing the material layer, while the other was idle. Analytical models for cutting force evaluation were developed for a single cutting insert. The accuracy of the models was improved by taking into account the specific cutting pressure that was determined experimentally. Chip cross-section varies in the course of the milling process therefore the models allow to estimate cutting forces by adopting the assumption of average chip thickness. Finally, a finite element model was built taking into account the magnitude of material cross-section that is removed during milling operation.","PeriodicalId":273573,"journal":{"name":"2011 IEEE International Symposium on Assembly and Manufacturing (ISAM)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Milling process study, assuming estimation of cutting force\",\"authors\":\"V. Gylienė, V. Ostaševičius, A. Sergent\",\"doi\":\"10.1109/ISAM.2011.5942363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents results of research of a milling process, which include experimental studies associated with determination of cutting forces. Cutting depth is a parameter that was varied in the course of the measurements. Analytical models were constructed for cutting force prediction on the basis of experimental data obtained for tool geometry, cross-section of removed material layer and cutting regimes. A tool with two inserts was used for milling experiments: during cutting process one insert was removing the material layer, while the other was idle. Analytical models for cutting force evaluation were developed for a single cutting insert. The accuracy of the models was improved by taking into account the specific cutting pressure that was determined experimentally. Chip cross-section varies in the course of the milling process therefore the models allow to estimate cutting forces by adopting the assumption of average chip thickness. Finally, a finite element model was built taking into account the magnitude of material cross-section that is removed during milling operation.\",\"PeriodicalId\":273573,\"journal\":{\"name\":\"2011 IEEE International Symposium on Assembly and Manufacturing (ISAM)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Symposium on Assembly and Manufacturing (ISAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAM.2011.5942363\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Assembly and Manufacturing (ISAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAM.2011.5942363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Milling process study, assuming estimation of cutting force
The paper presents results of research of a milling process, which include experimental studies associated with determination of cutting forces. Cutting depth is a parameter that was varied in the course of the measurements. Analytical models were constructed for cutting force prediction on the basis of experimental data obtained for tool geometry, cross-section of removed material layer and cutting regimes. A tool with two inserts was used for milling experiments: during cutting process one insert was removing the material layer, while the other was idle. Analytical models for cutting force evaluation were developed for a single cutting insert. The accuracy of the models was improved by taking into account the specific cutting pressure that was determined experimentally. Chip cross-section varies in the course of the milling process therefore the models allow to estimate cutting forces by adopting the assumption of average chip thickness. Finally, a finite element model was built taking into account the magnitude of material cross-section that is removed during milling operation.