寻找一个简单的证明:指数时间vs.概率多项式时间

R. Impagliazzo, Valentine Kabanets, A. Wigderson
{"title":"寻找一个简单的证明:指数时间vs.概率多项式时间","authors":"R. Impagliazzo, Valentine Kabanets, A. Wigderson","doi":"10.1109/CCC.2001.933865","DOIUrl":null,"url":null,"abstract":"Restricting the search space {0, 1}/sup n/ to the set of truth tables of \"easy\" Boolean functions on log n variables, as well as using some known hardness-randomness tradeoffs, we establish a number of results relating the complexity of exponential-time and probabilistic polynomial-time complexity classes. In particular, we show that NEXP/spl sub/P/poly/spl hArr/NEXP=MA; this can be interpreted to say that no derandomization of MA (and, hence, of promise-BPP) is possible unless NEXP contains a hard Boolean function. We also prove several downward closure results for ZPP, RP, BPP, and MA; e.g., we show EXP=BPP/spl hArr/EE=BPE, where EE is the double-exponential time class and BPE is the exponential-time analogue of BPP.","PeriodicalId":240268,"journal":{"name":"Proceedings 16th Annual IEEE Conference on Computational Complexity","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"225","resultStr":"{\"title\":\"In search of an easy witness: exponential time vs. probabilistic polynomial time\",\"authors\":\"R. Impagliazzo, Valentine Kabanets, A. Wigderson\",\"doi\":\"10.1109/CCC.2001.933865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Restricting the search space {0, 1}/sup n/ to the set of truth tables of \\\"easy\\\" Boolean functions on log n variables, as well as using some known hardness-randomness tradeoffs, we establish a number of results relating the complexity of exponential-time and probabilistic polynomial-time complexity classes. In particular, we show that NEXP/spl sub/P/poly/spl hArr/NEXP=MA; this can be interpreted to say that no derandomization of MA (and, hence, of promise-BPP) is possible unless NEXP contains a hard Boolean function. We also prove several downward closure results for ZPP, RP, BPP, and MA; e.g., we show EXP=BPP/spl hArr/EE=BPE, where EE is the double-exponential time class and BPE is the exponential-time analogue of BPP.\",\"PeriodicalId\":240268,\"journal\":{\"name\":\"Proceedings 16th Annual IEEE Conference on Computational Complexity\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"225\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 16th Annual IEEE Conference on Computational Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCC.2001.933865\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 16th Annual IEEE Conference on Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.2001.933865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 225

摘要

将搜索空间{0,1}/sup n/限制为log n个变量上的“简单”布尔函数的真值表集,以及使用一些已知的硬性-随机性权衡,我们建立了一些与指数时间和概率多项式时间复杂性类的复杂性相关的结果。特别地,我们证明了NEXP/spl sub/P/poly/spl hArr/NEXP=MA;这可以解释为,除非NEXP包含硬布尔函数,否则MA(以及promise-BPP)的非随机化是不可能的。我们还证明了ZPP、RP、BPP和MA的几个向下闭合结果;例如,我们证明EXP=BPP/spl hArr/EE=BPE,其中EE是双指数时间类,BPE是BPP的指数时间模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In search of an easy witness: exponential time vs. probabilistic polynomial time
Restricting the search space {0, 1}/sup n/ to the set of truth tables of "easy" Boolean functions on log n variables, as well as using some known hardness-randomness tradeoffs, we establish a number of results relating the complexity of exponential-time and probabilistic polynomial-time complexity classes. In particular, we show that NEXP/spl sub/P/poly/spl hArr/NEXP=MA; this can be interpreted to say that no derandomization of MA (and, hence, of promise-BPP) is possible unless NEXP contains a hard Boolean function. We also prove several downward closure results for ZPP, RP, BPP, and MA; e.g., we show EXP=BPP/spl hArr/EE=BPE, where EE is the double-exponential time class and BPE is the exponential-time analogue of BPP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信