M. Gopalachari, P. Sammulal
{"title":"混合推荐中基于元数据的概念化和时间语义","authors":"M. Gopalachari, P. Sammulal","doi":"10.4018/IJRSDA.2017100104","DOIUrl":null,"url":null,"abstract":"Modernrecommendersystemstarget thesatisfactionof theenduser throughthepersonalization techniquesthatcollectsthehistoryoftheuser’snavigation.Butthesoledependencyontheuserprofile bymeansofnavigationhistoryalonecannotpromisethequalityofrecommendationsbecauseofthe lackofsemantics.Thoughtheliteratureprovidesmanytechniquestoconceptualizetheprocessthey leadtohighcomputationalcomplexityduetoconsideringthecontentdataasinputinformation.In thispaperahybridrecommenderframeworkisdevelopedthatconsidersMetadatabasedconceptual semantics and the temporal patterns on top of the usage history. This framework also includes anonlineprocessthat identifiestheconceptualdriftof theusagedynamically.Theexperimental resultsshowntheeffectivenessoftheproposedframeworkwhencomparedtotheexistingmodern recommendersalsoindicatethattheproposedmodelcanresolveacoldstartproblemyetaccurate suggestionsreducingcomputationalcomplexity. KeywoRDS Collaborative Filtering, Concept Drift, Domain Ontology, Recommendation System, Sequential Patterns, Temporal Semantics, Web Usage Mining","PeriodicalId":152357,"journal":{"name":"Int. J. Rough Sets Data Anal.","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Meta Data based Conceptualization and Temporal Semantics in Hybrid Recommender\",\"authors\":\"M. Gopalachari, P. Sammulal\",\"doi\":\"10.4018/IJRSDA.2017100104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modernrecommendersystemstarget thesatisfactionof theenduser throughthepersonalization techniquesthatcollectsthehistoryoftheuser’snavigation.Butthesoledependencyontheuserprofile bymeansofnavigationhistoryalonecannotpromisethequalityofrecommendationsbecauseofthe lackofsemantics.Thoughtheliteratureprovidesmanytechniquestoconceptualizetheprocessthey leadtohighcomputationalcomplexityduetoconsideringthecontentdataasinputinformation.In thispaperahybridrecommenderframeworkisdevelopedthatconsidersMetadatabasedconceptual semantics and the temporal patterns on top of the usage history. This framework also includes anonlineprocessthat identifiestheconceptualdriftof theusagedynamically.Theexperimental resultsshowntheeffectivenessoftheproposedframeworkwhencomparedtotheexistingmodern recommendersalsoindicatethattheproposedmodelcanresolveacoldstartproblemyetaccurate suggestionsreducingcomputationalcomplexity. KeywoRDS Collaborative Filtering, Concept Drift, Domain Ontology, Recommendation System, Sequential Patterns, Temporal Semantics, Web Usage Mining\",\"PeriodicalId\":152357,\"journal\":{\"name\":\"Int. J. Rough Sets Data Anal.\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Rough Sets Data Anal.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJRSDA.2017100104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Rough Sets Data Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJRSDA.2017100104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Meta Data based Conceptualization and Temporal Semantics in Hybrid Recommender
Modernrecommendersystemstarget thesatisfactionof theenduser throughthepersonalization techniquesthatcollectsthehistoryoftheuser’snavigation.Butthesoledependencyontheuserprofile bymeansofnavigationhistoryalonecannotpromisethequalityofrecommendationsbecauseofthe lackofsemantics.Thoughtheliteratureprovidesmanytechniquestoconceptualizetheprocessthey leadtohighcomputationalcomplexityduetoconsideringthecontentdataasinputinformation.In thispaperahybridrecommenderframeworkisdevelopedthatconsidersMetadatabasedconceptual semantics and the temporal patterns on top of the usage history. This framework also includes anonlineprocessthat identifiestheconceptualdriftof theusagedynamically.Theexperimental resultsshowntheeffectivenessoftheproposedframeworkwhencomparedtotheexistingmodern recommendersalsoindicatethattheproposedmodelcanresolveacoldstartproblemyetaccurate suggestionsreducingcomputationalcomplexity. KeywoRDS Collaborative Filtering, Concept Drift, Domain Ontology, Recommendation System, Sequential Patterns, Temporal Semantics, Web Usage Mining