基于非线性插值映射的头部姿态估计

Hwei-Jen Lin, Chen-Wei Chang, I-Chun Pai
{"title":"基于非线性插值映射的头部姿态估计","authors":"Hwei-Jen Lin, Chen-Wei Chang, I-Chun Pai","doi":"10.1109/JCPC.2009.5420207","DOIUrl":null,"url":null,"abstract":"The performance of face recognition systems depends on conditions being consistent, including lighting, pose and facial expression. To solve the problem produced by pose variation it is suggested to pre-estimate the pose orientation of the given head image before it is recognized. In this paper, we propose a head pose estimation method that is an improvement on the one proposed by N. Hu et al. [1]. The proposed method trains in a supervised manner a nonlinear interpolative mapping function that maps input images to predicted pose angles. This mapping function is a linear combination of some Radial Basis Functions (RBF). The experimental results show that our proposed method has a better performance than the method proposed by Nan Hu et al. in terms of both time efficiency and estimation accuracy.","PeriodicalId":284323,"journal":{"name":"2009 Joint Conferences on Pervasive Computing (JCPC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Head pose estimation based on nonlinear interpolative mapping\",\"authors\":\"Hwei-Jen Lin, Chen-Wei Chang, I-Chun Pai\",\"doi\":\"10.1109/JCPC.2009.5420207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of face recognition systems depends on conditions being consistent, including lighting, pose and facial expression. To solve the problem produced by pose variation it is suggested to pre-estimate the pose orientation of the given head image before it is recognized. In this paper, we propose a head pose estimation method that is an improvement on the one proposed by N. Hu et al. [1]. The proposed method trains in a supervised manner a nonlinear interpolative mapping function that maps input images to predicted pose angles. This mapping function is a linear combination of some Radial Basis Functions (RBF). The experimental results show that our proposed method has a better performance than the method proposed by Nan Hu et al. in terms of both time efficiency and estimation accuracy.\",\"PeriodicalId\":284323,\"journal\":{\"name\":\"2009 Joint Conferences on Pervasive Computing (JCPC)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Joint Conferences on Pervasive Computing (JCPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JCPC.2009.5420207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Joint Conferences on Pervasive Computing (JCPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JCPC.2009.5420207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

面部识别系统的性能取决于条件的一致性,包括光线、姿势和面部表情。为了解决位姿变化带来的问题,建议在识别前对给定头部图像的位姿方向进行预估。在本文中,我们提出了一种头部姿态估计方法,该方法是对N. Hu等人[1]提出的方法的改进。该方法以监督的方式训练非线性插值映射函数,将输入图像映射到预测的姿态角。这个映射函数是一些径向基函数(RBF)的线性组合。实验结果表明,我们提出的方法在时间效率和估计精度上都优于Nan Hu等人提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Head pose estimation based on nonlinear interpolative mapping
The performance of face recognition systems depends on conditions being consistent, including lighting, pose and facial expression. To solve the problem produced by pose variation it is suggested to pre-estimate the pose orientation of the given head image before it is recognized. In this paper, we propose a head pose estimation method that is an improvement on the one proposed by N. Hu et al. [1]. The proposed method trains in a supervised manner a nonlinear interpolative mapping function that maps input images to predicted pose angles. This mapping function is a linear combination of some Radial Basis Functions (RBF). The experimental results show that our proposed method has a better performance than the method proposed by Nan Hu et al. in terms of both time efficiency and estimation accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信