N. Bergmann, J. Juergens, L. Hou, Yunlong Wang, Jarrod Trevathan
{"title":"无线水下电力和数据传输","authors":"N. Bergmann, J. Juergens, L. Hou, Yunlong Wang, Jarrod Trevathan","doi":"10.1109/LCNW.2013.6758505","DOIUrl":null,"url":null,"abstract":"This work investigates whether a contactless, wireless underwater coupling could be developed for underwater sensor networks. This requires the wireless transmission of power from the sensor hub to the transducer module, and the two-way wireless data communication between hub and transducer. Results from a trial deployment of systems with conventional waterproof couplings show that these are a major shortcoming of existing systems. Experiments are conducted which demonstrate that a Zigbee transceiver, operating in the 2.4GHz band, can communicate with low error rates up to 40mm at low RF power (-25dBm) and up to 70mm at higher power (-3 dBm) in seawater. Ranges are slightly higher in fresh water. Inductive power transfer, using a split transformer design, can transmit low power, in the 50-100mW range with efficiency of approximately 50%, demonstrating that wireless sensor couplings are feasible.","PeriodicalId":290924,"journal":{"name":"38th Annual IEEE Conference on Local Computer Networks - Workshops","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Wireless underwater power and data transfer\",\"authors\":\"N. Bergmann, J. Juergens, L. Hou, Yunlong Wang, Jarrod Trevathan\",\"doi\":\"10.1109/LCNW.2013.6758505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work investigates whether a contactless, wireless underwater coupling could be developed for underwater sensor networks. This requires the wireless transmission of power from the sensor hub to the transducer module, and the two-way wireless data communication between hub and transducer. Results from a trial deployment of systems with conventional waterproof couplings show that these are a major shortcoming of existing systems. Experiments are conducted which demonstrate that a Zigbee transceiver, operating in the 2.4GHz band, can communicate with low error rates up to 40mm at low RF power (-25dBm) and up to 70mm at higher power (-3 dBm) in seawater. Ranges are slightly higher in fresh water. Inductive power transfer, using a split transformer design, can transmit low power, in the 50-100mW range with efficiency of approximately 50%, demonstrating that wireless sensor couplings are feasible.\",\"PeriodicalId\":290924,\"journal\":{\"name\":\"38th Annual IEEE Conference on Local Computer Networks - Workshops\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"38th Annual IEEE Conference on Local Computer Networks - Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LCNW.2013.6758505\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"38th Annual IEEE Conference on Local Computer Networks - Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LCNW.2013.6758505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This work investigates whether a contactless, wireless underwater coupling could be developed for underwater sensor networks. This requires the wireless transmission of power from the sensor hub to the transducer module, and the two-way wireless data communication between hub and transducer. Results from a trial deployment of systems with conventional waterproof couplings show that these are a major shortcoming of existing systems. Experiments are conducted which demonstrate that a Zigbee transceiver, operating in the 2.4GHz band, can communicate with low error rates up to 40mm at low RF power (-25dBm) and up to 70mm at higher power (-3 dBm) in seawater. Ranges are slightly higher in fresh water. Inductive power transfer, using a split transformer design, can transmit low power, in the 50-100mW range with efficiency of approximately 50%, demonstrating that wireless sensor couplings are feasible.