有效的软件实现结对的最终求幂

Souhir Gabsi, Anissa Sghaier, Z. Medien, Mohsen Machhout
{"title":"有效的软件实现结对的最终求幂","authors":"Souhir Gabsi, Anissa Sghaier, Z. Medien, Mohsen Machhout","doi":"10.1109/IPAS.2016.7880138","DOIUrl":null,"url":null,"abstract":"Pairing-based cryptography has got a lot of attention the last years, since the proposition of the tripartite key exchange. The best type of pairing is optimal ate pairing over Barreto-Naehrig curves which are based on two steps: Miller Loop and final exponentiation. Most of the researches were done for the Miller Loop. In this paper, we present the different methods for computing the hard part of the final exponentiation of optimal ate pairings based on a hard mathematical study. Using a comparative study based on the temporary number and memory resources, we will choose the best method to be then implemented in Matlab Software. Thus, the best one is Devigili et al. method presenting a reduced complexity and required number of registers.","PeriodicalId":283737,"journal":{"name":"2016 International Image Processing, Applications and Systems (IPAS)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Efficient software implementation of the final exponentiation for pairing\",\"authors\":\"Souhir Gabsi, Anissa Sghaier, Z. Medien, Mohsen Machhout\",\"doi\":\"10.1109/IPAS.2016.7880138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pairing-based cryptography has got a lot of attention the last years, since the proposition of the tripartite key exchange. The best type of pairing is optimal ate pairing over Barreto-Naehrig curves which are based on two steps: Miller Loop and final exponentiation. Most of the researches were done for the Miller Loop. In this paper, we present the different methods for computing the hard part of the final exponentiation of optimal ate pairings based on a hard mathematical study. Using a comparative study based on the temporary number and memory resources, we will choose the best method to be then implemented in Matlab Software. Thus, the best one is Devigili et al. method presenting a reduced complexity and required number of registers.\",\"PeriodicalId\":283737,\"journal\":{\"name\":\"2016 International Image Processing, Applications and Systems (IPAS)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Image Processing, Applications and Systems (IPAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPAS.2016.7880138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Image Processing, Applications and Systems (IPAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPAS.2016.7880138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

自三方密钥交换的提出以来,基于配对的密码学近年来受到了广泛的关注。最佳配对类型是Barreto-Naehrig曲线上的最优配对,该配对基于米勒环和最终幂两步。大多数研究都是为米勒环路做的。在本文中,我们提出了基于硬数学研究的计算最优值对最终幂的困难部分的不同方法。通过对临时数量和内存资源的比较研究,我们将选择最佳的方法,然后在Matlab软件中实现。因此,最好的方法是Devigili等人的方法,它降低了复杂性和所需的寄存器数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient software implementation of the final exponentiation for pairing
Pairing-based cryptography has got a lot of attention the last years, since the proposition of the tripartite key exchange. The best type of pairing is optimal ate pairing over Barreto-Naehrig curves which are based on two steps: Miller Loop and final exponentiation. Most of the researches were done for the Miller Loop. In this paper, we present the different methods for computing the hard part of the final exponentiation of optimal ate pairings based on a hard mathematical study. Using a comparative study based on the temporary number and memory resources, we will choose the best method to be then implemented in Matlab Software. Thus, the best one is Devigili et al. method presenting a reduced complexity and required number of registers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信