基于人工神经网络的环形电网最佳输电分路点求解方案

Vladislav I. Ziryukin, R. Solopov, Roman Shatalov
{"title":"基于人工神经网络的环形电网最佳输电分路点求解方案","authors":"Vladislav I. Ziryukin, R. Solopov, Roman Shatalov","doi":"10.1109/RusAutoCon52004.2021.9537330","DOIUrl":null,"url":null,"abstract":"This work demonstrates the results of the artificial neural network development which determines the optimal separation point of the ring electrical grid power transit according to the criterion of minimizing active power losses. The neural network is trained using different load distribution regimes measurement data from the model which is developed in the \"Simulink\" library of the \"Matlab\" software package and based on the existing ring section circuit. Model verification and artificial neural network testing were provided using ASCME data. The working algorithm and usage methodology of the advising system for real time optimization of the electrical grid circuit active power losses is proposed.","PeriodicalId":106150,"journal":{"name":"2021 International Russian Automation Conference (RusAutoCon)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Program for Finding the Optimal Power Transit Separation Place of a Ring Electric Power Grid Based on Artificial Neural Networks\",\"authors\":\"Vladislav I. Ziryukin, R. Solopov, Roman Shatalov\",\"doi\":\"10.1109/RusAutoCon52004.2021.9537330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work demonstrates the results of the artificial neural network development which determines the optimal separation point of the ring electrical grid power transit according to the criterion of minimizing active power losses. The neural network is trained using different load distribution regimes measurement data from the model which is developed in the \\\"Simulink\\\" library of the \\\"Matlab\\\" software package and based on the existing ring section circuit. Model verification and artificial neural network testing were provided using ASCME data. The working algorithm and usage methodology of the advising system for real time optimization of the electrical grid circuit active power losses is proposed.\",\"PeriodicalId\":106150,\"journal\":{\"name\":\"2021 International Russian Automation Conference (RusAutoCon)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Russian Automation Conference (RusAutoCon)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RusAutoCon52004.2021.9537330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Russian Automation Conference (RusAutoCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RusAutoCon52004.2021.9537330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文展示了基于有功损耗最小准则的人工神经网络的开发成果,该方法确定了环网输电的最优分离点。神经网络的训练是基于现有环截面电路,利用Matlab软件包中的Simulink库开发的模型的不同负载分配制度的测量数据。利用ASCME数据进行了模型验证和人工神经网络测试。提出了电网有功损耗实时优化建议系统的工作算法和使用方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Program for Finding the Optimal Power Transit Separation Place of a Ring Electric Power Grid Based on Artificial Neural Networks
This work demonstrates the results of the artificial neural network development which determines the optimal separation point of the ring electrical grid power transit according to the criterion of minimizing active power losses. The neural network is trained using different load distribution regimes measurement data from the model which is developed in the "Simulink" library of the "Matlab" software package and based on the existing ring section circuit. Model verification and artificial neural network testing were provided using ASCME data. The working algorithm and usage methodology of the advising system for real time optimization of the electrical grid circuit active power losses is proposed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信