基于PID神经网络、人工智能和CPSO算法的SAR功率控制器设计研究

Piao Haiguo, Bai Lipeng, Ming Hengchao, Wang Yongkang, Cao Cheng
{"title":"基于PID神经网络、人工智能和CPSO算法的SAR功率控制器设计研究","authors":"Piao Haiguo, Bai Lipeng, Ming Hengchao, Wang Yongkang, Cao Cheng","doi":"10.1109/CISS57580.2022.9971339","DOIUrl":null,"url":null,"abstract":"The $S^{4}R$ Switch topology technology is used in SAR satellite power system which has nonlinear characteristics, and difficult to establish an accurate mathematical model for designing a satisfied controller. In this paper, developed an artificial intelligence design method based the Dynamic P-I-D Neurons Identification Model (DPIDNIM) and nonlinear auto regressive moving average (NARMA-L2) model. In order to verify the design method’s feasibility, used a typical non-linear time series named Mackey-Glass (MG) time series to confirm the accuracy and effective of the identification model. Then a cooperated-PSO-based PID neural network control strategy (PIDNNC) is given out. Research results indicate DPIDNIM-CPSO-Based Artificial Intelligence design method adapts to design a controller for SAR satellite power system","PeriodicalId":331510,"journal":{"name":"2022 3rd China International SAR Symposium (CISS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SAR Power Controller Design Research Based On PID Neural Network Artificial Intelligence and CPSO Algorithm\",\"authors\":\"Piao Haiguo, Bai Lipeng, Ming Hengchao, Wang Yongkang, Cao Cheng\",\"doi\":\"10.1109/CISS57580.2022.9971339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The $S^{4}R$ Switch topology technology is used in SAR satellite power system which has nonlinear characteristics, and difficult to establish an accurate mathematical model for designing a satisfied controller. In this paper, developed an artificial intelligence design method based the Dynamic P-I-D Neurons Identification Model (DPIDNIM) and nonlinear auto regressive moving average (NARMA-L2) model. In order to verify the design method’s feasibility, used a typical non-linear time series named Mackey-Glass (MG) time series to confirm the accuracy and effective of the identification model. Then a cooperated-PSO-based PID neural network control strategy (PIDNNC) is given out. Research results indicate DPIDNIM-CPSO-Based Artificial Intelligence design method adapts to design a controller for SAR satellite power system\",\"PeriodicalId\":331510,\"journal\":{\"name\":\"2022 3rd China International SAR Symposium (CISS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 3rd China International SAR Symposium (CISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISS57580.2022.9971339\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 3rd China International SAR Symposium (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS57580.2022.9971339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要$S^{4}R$ Switch拓扑技术应用于SAR卫星电源系统,该系统具有非线性特性,难以建立精确的数学模型来设计满意的控制器。本文提出了一种基于动态P-I-D神经元识别模型(DPIDNIM)和非线性自回归移动平均(NARMA-L2)模型的人工智能设计方法。为了验证设计方法的可行性,采用典型的非线性时间序列Mackey-Glass (MG)时间序列来验证识别模型的准确性和有效性。在此基础上,提出了一种基于协同pso的PID神经网络控制策略。研究结果表明,基于dpidnimm - cpso的人工智能设计方法适用于SAR卫星动力系统控制器的设计
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SAR Power Controller Design Research Based On PID Neural Network Artificial Intelligence and CPSO Algorithm
The $S^{4}R$ Switch topology technology is used in SAR satellite power system which has nonlinear characteristics, and difficult to establish an accurate mathematical model for designing a satisfied controller. In this paper, developed an artificial intelligence design method based the Dynamic P-I-D Neurons Identification Model (DPIDNIM) and nonlinear auto regressive moving average (NARMA-L2) model. In order to verify the design method’s feasibility, used a typical non-linear time series named Mackey-Glass (MG) time series to confirm the accuracy and effective of the identification model. Then a cooperated-PSO-based PID neural network control strategy (PIDNNC) is given out. Research results indicate DPIDNIM-CPSO-Based Artificial Intelligence design method adapts to design a controller for SAR satellite power system
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信