基于联想记忆方法的模式识别算法分析——Hopfield网络与分布式分层图神经元(DHGN)的比较研究

A. Amin, R. Mahmood, A.I. Khan
{"title":"基于联想记忆方法的模式识别算法分析——Hopfield网络与分布式分层图神经元(DHGN)的比较研究","authors":"A. Amin, R. Mahmood, A.I. Khan","doi":"10.1109/CIT.2008.WORKSHOPS.65","DOIUrl":null,"url":null,"abstract":"In this paper, we conduct a comparative analysis of two associative memory-based pattern recognition algorithms. We compare the established Hopfield network algorithm with our novel Distributed Hierarchical Graph Neuron (DHGN) algorithm. The computational complexity and recall efficiency aspects of these algorithms are discussed. The results show that DHGN offers lower computational complexity with better recall efficiency compared to the Hopfield network.","PeriodicalId":155998,"journal":{"name":"2008 IEEE 8th International Conference on Computer and Information Technology Workshops","volume":"135 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Analysis of Pattern Recognition Algorithms Using Associative Memory Approach: A Comparative Study between the Hopfield Network and Distributed Hierarchical Graph Neuron (DHGN)\",\"authors\":\"A. Amin, R. Mahmood, A.I. Khan\",\"doi\":\"10.1109/CIT.2008.WORKSHOPS.65\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we conduct a comparative analysis of two associative memory-based pattern recognition algorithms. We compare the established Hopfield network algorithm with our novel Distributed Hierarchical Graph Neuron (DHGN) algorithm. The computational complexity and recall efficiency aspects of these algorithms are discussed. The results show that DHGN offers lower computational complexity with better recall efficiency compared to the Hopfield network.\",\"PeriodicalId\":155998,\"journal\":{\"name\":\"2008 IEEE 8th International Conference on Computer and Information Technology Workshops\",\"volume\":\"135 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE 8th International Conference on Computer and Information Technology Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIT.2008.WORKSHOPS.65\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE 8th International Conference on Computer and Information Technology Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIT.2008.WORKSHOPS.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本文对两种基于联想记忆的模式识别算法进行了比较分析。我们将建立的Hopfield网络算法与我们的分布式分层图神经元(DHGN)算法进行了比较。讨论了这些算法的计算复杂度和召回效率。结果表明,与Hopfield网络相比,DHGN具有更低的计算复杂度和更高的召回效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of Pattern Recognition Algorithms Using Associative Memory Approach: A Comparative Study between the Hopfield Network and Distributed Hierarchical Graph Neuron (DHGN)
In this paper, we conduct a comparative analysis of two associative memory-based pattern recognition algorithms. We compare the established Hopfield network algorithm with our novel Distributed Hierarchical Graph Neuron (DHGN) algorithm. The computational complexity and recall efficiency aspects of these algorithms are discussed. The results show that DHGN offers lower computational complexity with better recall efficiency compared to the Hopfield network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信