基于图嵌入神经网络的自适应布局分解

Jialu Xia, Yuzhe Ma, Jialu Li, Yibo Lin, Bei Yu
{"title":"基于图嵌入神经网络的自适应布局分解","authors":"Jialu Xia, Yuzhe Ma, Jialu Li, Yibo Lin, Bei Yu","doi":"10.1109/DAC18072.2020.9218706","DOIUrl":null,"url":null,"abstract":"Multiple patterning lithography decomposition (MPLD) has been widely investigated, but so far there is no decomposer that dominates others in terms of both the optimality and the efficiency. This observation motivates us exploring how to adaptively select the most suitable MPLD strategy for a given layout graph, which is non-trivial and still an open problem. In this paper, we propose a layout decomposition framework based on graph convolutional networks to obtain the graph embeddings of the layout. The graph embeddings are used for graph library construction, decomposer selection and graph matching. Experimental results show that our graph embedding based framework can achieve optimal decompositions under negligible runtime overhead even comparing with fast but non-optimal heuristics.","PeriodicalId":428807,"journal":{"name":"2020 57th ACM/IEEE Design Automation Conference (DAC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Adaptive Layout Decomposition with Graph Embedding Neural Networks\",\"authors\":\"Jialu Xia, Yuzhe Ma, Jialu Li, Yibo Lin, Bei Yu\",\"doi\":\"10.1109/DAC18072.2020.9218706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiple patterning lithography decomposition (MPLD) has been widely investigated, but so far there is no decomposer that dominates others in terms of both the optimality and the efficiency. This observation motivates us exploring how to adaptively select the most suitable MPLD strategy for a given layout graph, which is non-trivial and still an open problem. In this paper, we propose a layout decomposition framework based on graph convolutional networks to obtain the graph embeddings of the layout. The graph embeddings are used for graph library construction, decomposer selection and graph matching. Experimental results show that our graph embedding based framework can achieve optimal decompositions under negligible runtime overhead even comparing with fast but non-optimal heuristics.\",\"PeriodicalId\":428807,\"journal\":{\"name\":\"2020 57th ACM/IEEE Design Automation Conference (DAC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 57th ACM/IEEE Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DAC18072.2020.9218706\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 57th ACM/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAC18072.2020.9218706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

多模式光刻分解(MPLD)已被广泛研究,但到目前为止,还没有一种分解方法在最优性和效率方面都占主导地位。这一观察促使我们探索如何自适应地为给定的布局图选择最合适的MPLD策略,这是一个非平凡的问题,仍然是一个开放的问题。本文提出了一种基于图卷积网络的布局分解框架,以获取布局的图嵌入。图嵌入用于图库构建、分配器选择和图匹配。实验结果表明,与快速但非最优的启发式算法相比,基于图嵌入的框架可以在可忽略的运行时间开销下实现最优分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Layout Decomposition with Graph Embedding Neural Networks
Multiple patterning lithography decomposition (MPLD) has been widely investigated, but so far there is no decomposer that dominates others in terms of both the optimality and the efficiency. This observation motivates us exploring how to adaptively select the most suitable MPLD strategy for a given layout graph, which is non-trivial and still an open problem. In this paper, we propose a layout decomposition framework based on graph convolutional networks to obtain the graph embeddings of the layout. The graph embeddings are used for graph library construction, decomposer selection and graph matching. Experimental results show that our graph embedding based framework can achieve optimal decompositions under negligible runtime overhead even comparing with fast but non-optimal heuristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信