利用正交子空间投影的kaczmarz加速度

T. Wallace, A. Sekmen
{"title":"利用正交子空间投影的kaczmarz加速度","authors":"T. Wallace, A. Sekmen","doi":"10.1109/BSEC.2013.6618494","DOIUrl":null,"url":null,"abstract":"The Kaczmarz iterative algorithm is widely used to solve inconsistent over-determined linear systems, such as in computed tomography. This paper introduces an algorithm for improving convergence of Kaczmarz's method using projections into orthogonal subspaces from randomly selected measurement hyperplanes. In preliminary simulations, the method is computationally feasible, allows variable convergence acceleration with penalty-cost, but statistically reduces iterative errors. We evaluated our algorithm using simulations of uniform random Gaussian sampling on the unit sphere and the standard phantom image. The algorithm shows promise for inversions in diagnostic methods in biomedical applications and related problems in bioinformatics via parallel high-performance computing platforms.","PeriodicalId":431045,"journal":{"name":"2013 Biomedical Sciences and Engineering Conference (BSEC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Acceleration of kaczmarz using orthogonal subspace projections\",\"authors\":\"T. Wallace, A. Sekmen\",\"doi\":\"10.1109/BSEC.2013.6618494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Kaczmarz iterative algorithm is widely used to solve inconsistent over-determined linear systems, such as in computed tomography. This paper introduces an algorithm for improving convergence of Kaczmarz's method using projections into orthogonal subspaces from randomly selected measurement hyperplanes. In preliminary simulations, the method is computationally feasible, allows variable convergence acceleration with penalty-cost, but statistically reduces iterative errors. We evaluated our algorithm using simulations of uniform random Gaussian sampling on the unit sphere and the standard phantom image. The algorithm shows promise for inversions in diagnostic methods in biomedical applications and related problems in bioinformatics via parallel high-performance computing platforms.\",\"PeriodicalId\":431045,\"journal\":{\"name\":\"2013 Biomedical Sciences and Engineering Conference (BSEC)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Biomedical Sciences and Engineering Conference (BSEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BSEC.2013.6618494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Biomedical Sciences and Engineering Conference (BSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSEC.2013.6618494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

Kaczmarz迭代算法被广泛用于求解不一致的过定线性系统,如计算机断层扫描。本文介绍了一种利用随机选取的测量超平面在正交子空间上的投影来提高Kaczmarz方法收敛性的算法。初步仿真结果表明,该方法在计算上是可行的,在补偿代价的情况下允许变收敛加速,但在统计上减少了迭代误差。我们通过在单位球和标准幻像上进行均匀随机高斯抽样的模拟来评估我们的算法。该算法有望通过并行高性能计算平台对生物医学应用中的诊断方法和生物信息学相关问题进行反演。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Acceleration of kaczmarz using orthogonal subspace projections
The Kaczmarz iterative algorithm is widely used to solve inconsistent over-determined linear systems, such as in computed tomography. This paper introduces an algorithm for improving convergence of Kaczmarz's method using projections into orthogonal subspaces from randomly selected measurement hyperplanes. In preliminary simulations, the method is computationally feasible, allows variable convergence acceleration with penalty-cost, but statistically reduces iterative errors. We evaluated our algorithm using simulations of uniform random Gaussian sampling on the unit sphere and the standard phantom image. The algorithm shows promise for inversions in diagnostic methods in biomedical applications and related problems in bioinformatics via parallel high-performance computing platforms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信