基于AMD gpu的高效PageRank和SpMV计算

Tianji Wu, Bo Wang, Yi Shan, Feng Yan, Yu Wang, Ningyi Xu
{"title":"基于AMD gpu的高效PageRank和SpMV计算","authors":"Tianji Wu, Bo Wang, Yi Shan, Feng Yan, Yu Wang, Ningyi Xu","doi":"10.1109/ICPP.2010.17","DOIUrl":null,"url":null,"abstract":"Google's famous PageRank algorithm is widely used to determine the importance of web pages in search engines. Given the large number of web pages on the World Wide Web, efficient computation of PageRank becomes a challenging problem. We accelerated the power method for computing PageRank on AMD GPUs. The core component of the power method is the Sparse Matrix-Vector Multiplication (SpMV). Its performance is largely determined by the characteristics of the sparse matrix, such as sparseness and distribution of non-zero values. Based on careful analysis on the web linkage matrices, we design a fast and scalable SpMV routine with three passes, using a modified Compressed Sparse Row format. Our PageRank computation achieves 15x speedup on a Radeon 5870 Graphic Card compared with a PhenomII 965 CPU at 3.4GHz. Our method can easily adapt to large scale data sets. We also compare the performance of the same method on the OpenCL platform with our low-level implementation.","PeriodicalId":180554,"journal":{"name":"2010 39th International Conference on Parallel Processing","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":"{\"title\":\"Efficient PageRank and SpMV Computation on AMD GPUs\",\"authors\":\"Tianji Wu, Bo Wang, Yi Shan, Feng Yan, Yu Wang, Ningyi Xu\",\"doi\":\"10.1109/ICPP.2010.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Google's famous PageRank algorithm is widely used to determine the importance of web pages in search engines. Given the large number of web pages on the World Wide Web, efficient computation of PageRank becomes a challenging problem. We accelerated the power method for computing PageRank on AMD GPUs. The core component of the power method is the Sparse Matrix-Vector Multiplication (SpMV). Its performance is largely determined by the characteristics of the sparse matrix, such as sparseness and distribution of non-zero values. Based on careful analysis on the web linkage matrices, we design a fast and scalable SpMV routine with three passes, using a modified Compressed Sparse Row format. Our PageRank computation achieves 15x speedup on a Radeon 5870 Graphic Card compared with a PhenomII 965 CPU at 3.4GHz. Our method can easily adapt to large scale data sets. We also compare the performance of the same method on the OpenCL platform with our low-level implementation.\",\"PeriodicalId\":180554,\"journal\":{\"name\":\"2010 39th International Conference on Parallel Processing\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"54\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 39th International Conference on Parallel Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPP.2010.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 39th International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.2010.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

摘要

谷歌著名的PageRank算法被广泛用于确定网页在搜索引擎中的重要性。由于万维网上的网页数量庞大,高效的PageRank计算成为一个具有挑战性的问题。我们在AMD gpu上加速了计算PageRank的功率方法。幂方法的核心部分是稀疏矩阵向量乘法(SpMV)。它的性能在很大程度上取决于稀疏矩阵的特性,如稀疏性和非零值的分布。在仔细分析网络链接矩阵的基础上,采用改进的压缩稀疏行(Compressed Sparse Row)格式,设计了一个快速、可扩展的三遍SpMV例程。我们的PageRank计算在Radeon 5870图形卡上实现了15倍的加速,与3.4GHz的PhenomII 965 CPU相比。我们的方法可以很容易地适应大规模的数据集。我们还比较了相同方法在OpenCL平台上与我们的底层实现的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient PageRank and SpMV Computation on AMD GPUs
Google's famous PageRank algorithm is widely used to determine the importance of web pages in search engines. Given the large number of web pages on the World Wide Web, efficient computation of PageRank becomes a challenging problem. We accelerated the power method for computing PageRank on AMD GPUs. The core component of the power method is the Sparse Matrix-Vector Multiplication (SpMV). Its performance is largely determined by the characteristics of the sparse matrix, such as sparseness and distribution of non-zero values. Based on careful analysis on the web linkage matrices, we design a fast and scalable SpMV routine with three passes, using a modified Compressed Sparse Row format. Our PageRank computation achieves 15x speedup on a Radeon 5870 Graphic Card compared with a PhenomII 965 CPU at 3.4GHz. Our method can easily adapt to large scale data sets. We also compare the performance of the same method on the OpenCL platform with our low-level implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信