第一人称视频中使用动物对的人类动作识别

Zeynep Gökce, Selen Pehlivan
{"title":"第一人称视频中使用动物对的人类动作识别","authors":"Zeynep Gökce, Selen Pehlivan","doi":"10.1109/SIU.2019.8806562","DOIUrl":null,"url":null,"abstract":"Human action recognition problem is important for distinguishing the rich variety of human activities in first-person videos. While there has been an improvement in egocentric action recognition, the space of action categories is large and it looks impractical to label training data for all categories. In this work, we decompose action models into verb and noun model pairs and propose a method to combine them with a simple fusion strategy. Particularly, we use 3 Dimensional Convolutional Neural Network model, C3D, for verb stream to model video-based features, and we use object detection model, YOLO, for noun stream to model objects interacting with human. We present experiments on the recently introduced large-scale EGTEA Gaze+ dataset with 106 action classes, and show that our model is comparable to the state-of-the-art action recognition models.","PeriodicalId":326275,"journal":{"name":"2019 27th Signal Processing and Communications Applications Conference (SIU)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Human Action Recognition in First Person Videos using Verb-Object Pairs\",\"authors\":\"Zeynep Gökce, Selen Pehlivan\",\"doi\":\"10.1109/SIU.2019.8806562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human action recognition problem is important for distinguishing the rich variety of human activities in first-person videos. While there has been an improvement in egocentric action recognition, the space of action categories is large and it looks impractical to label training data for all categories. In this work, we decompose action models into verb and noun model pairs and propose a method to combine them with a simple fusion strategy. Particularly, we use 3 Dimensional Convolutional Neural Network model, C3D, for verb stream to model video-based features, and we use object detection model, YOLO, for noun stream to model objects interacting with human. We present experiments on the recently introduced large-scale EGTEA Gaze+ dataset with 106 action classes, and show that our model is comparable to the state-of-the-art action recognition models.\",\"PeriodicalId\":326275,\"journal\":{\"name\":\"2019 27th Signal Processing and Communications Applications Conference (SIU)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 27th Signal Processing and Communications Applications Conference (SIU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2019.8806562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 27th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2019.8806562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

人类动作识别问题对于区分第一人称视频中丰富多样的人类活动具有重要意义。虽然在以自我为中心的动作识别方面有了很大的进步,但动作类别的空间很大,对所有类别的训练数据进行标记是不切实际的。在这项工作中,我们将动作模型分解为动词和名词模型对,并提出了一种用简单的融合策略将它们组合起来的方法。其中,动词流使用三维卷积神经网络模型C3D来模拟基于视频的特征,名词流使用目标检测模型YOLO来模拟与人交互的对象。我们在最近引入的具有106个动作类的大规模EGTEA Gaze+数据集上进行了实验,并表明我们的模型与最先进的动作识别模型相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human Action Recognition in First Person Videos using Verb-Object Pairs
Human action recognition problem is important for distinguishing the rich variety of human activities in first-person videos. While there has been an improvement in egocentric action recognition, the space of action categories is large and it looks impractical to label training data for all categories. In this work, we decompose action models into verb and noun model pairs and propose a method to combine them with a simple fusion strategy. Particularly, we use 3 Dimensional Convolutional Neural Network model, C3D, for verb stream to model video-based features, and we use object detection model, YOLO, for noun stream to model objects interacting with human. We present experiments on the recently introduced large-scale EGTEA Gaze+ dataset with 106 action classes, and show that our model is comparable to the state-of-the-art action recognition models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信