通过将混合极点解释为方向数据,对高光谱图像进行鲁棒解混

Lucas Drumetz, J. Chanussot, A. Iwasaki
{"title":"通过将混合极点解释为方向数据,对高光谱图像进行鲁棒解混","authors":"Lucas Drumetz, J. Chanussot, A. Iwasaki","doi":"10.52638/rfpt.2018.410","DOIUrl":null,"url":null,"abstract":"Le démélange d'images hyperspectrales vise à extraire les spectres des matériaux purs de la scène observée (pôles de mélange ou endmembers), ainsi que leurs proportions dans chaque pixel de l'image (abondances). La plupart des algorithmes s'appuient sur des techniques classiques d'extraction d'endmembers qui peuvent échouer dans des scénarios difficiles. Dans cet article, nous abordons ce problème en même temps que la variabilité des matériaux en considérant qu'un endmember est une direction dans l'espace ambiant plutôt qu'un seul point. Sous ce paradigme, nous proposons un algorithme pour fournir des spectres de référence robustes. Nous montrons le potentiel de l'algorithme proposé sur un jeu de données synthétiques en utilisant des spectres réels présentant de la variabilité intra-classe, et une image d'une scène naturelle complexe.","PeriodicalId":285609,"journal":{"name":"Revue Française de Photogrammétrie et de Télédétection","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Démélange robuste d'images hyperspectrales en interprétant les pôles de mélange comme des données directionnelles\",\"authors\":\"Lucas Drumetz, J. Chanussot, A. Iwasaki\",\"doi\":\"10.52638/rfpt.2018.410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Le démélange d'images hyperspectrales vise à extraire les spectres des matériaux purs de la scène observée (pôles de mélange ou endmembers), ainsi que leurs proportions dans chaque pixel de l'image (abondances). La plupart des algorithmes s'appuient sur des techniques classiques d'extraction d'endmembers qui peuvent échouer dans des scénarios difficiles. Dans cet article, nous abordons ce problème en même temps que la variabilité des matériaux en considérant qu'un endmember est une direction dans l'espace ambiant plutôt qu'un seul point. Sous ce paradigme, nous proposons un algorithme pour fournir des spectres de référence robustes. Nous montrons le potentiel de l'algorithme proposé sur un jeu de données synthétiques en utilisant des spectres réels présentant de la variabilité intra-classe, et une image d'une scène naturelle complexe.\",\"PeriodicalId\":285609,\"journal\":{\"name\":\"Revue Française de Photogrammétrie et de Télédétection\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revue Française de Photogrammétrie et de Télédétection\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52638/rfpt.2018.410\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revue Française de Photogrammétrie et de Télédétection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52638/rfpt.2018.410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高光谱图像的分解旨在从观测场景中提取纯物质的光谱(混合极点或端点),以及它们在图像中每个像素中的比例(丰度)。大多数算法依赖于传统的端成员提取技术,但在困难的场景中可能会失败。在本文中,我们通过考虑端成员是环境空间中的一个方向而不是一个点来解决这个问题和材料的可变性。在这个范例下,我们提出了一种算法来提供鲁棒的参考光谱。我们展示了该算法在使用具有类内变异性的真实光谱和复杂自然场景图像的合成数据集上的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Démélange robuste d'images hyperspectrales en interprétant les pôles de mélange comme des données directionnelles
Le démélange d'images hyperspectrales vise à extraire les spectres des matériaux purs de la scène observée (pôles de mélange ou endmembers), ainsi que leurs proportions dans chaque pixel de l'image (abondances). La plupart des algorithmes s'appuient sur des techniques classiques d'extraction d'endmembers qui peuvent échouer dans des scénarios difficiles. Dans cet article, nous abordons ce problème en même temps que la variabilité des matériaux en considérant qu'un endmember est une direction dans l'espace ambiant plutôt qu'un seul point. Sous ce paradigme, nous proposons un algorithme pour fournir des spectres de référence robustes. Nous montrons le potentiel de l'algorithme proposé sur un jeu de données synthétiques en utilisant des spectres réels présentant de la variabilité intra-classe, et une image d'une scène naturelle complexe.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信