面向嵌入式客户端的内容和竞争感知视频对象分类系统

Xukan Ran, Rakesh Kumar
{"title":"面向嵌入式客户端的内容和竞争感知视频对象分类系统","authors":"Xukan Ran, Rakesh Kumar","doi":"10.1145/3463530","DOIUrl":null,"url":null,"abstract":"Videos take a lot of time to transport over the network, hence running analytics on the live video on embedded or mobile devices has become an important system driver. Considering such devices, e.g., surveillance cameras or AR/VR gadgets, are resource constrained, although there has been significant work in creating lightweight deep neural networks (DNNs) for such clients, none of these can adapt to changing runtime conditions, e.g., changes in resource availability on the device, the content characteristics, or requirements from the user. In this article, we introduce ApproxNet, a video object classification system for embedded or mobile clients. It enables novel dynamic approximation techniques to achieve desired inference latency and accuracy trade-off under changing runtime conditions. It achieves this by enabling two approximation knobs within a single DNN model rather than creating and maintaining an ensemble of models, e.g., MCDNN [MobiSys-16]. We show that ApproxNet can adapt seamlessly at runtime to these changes, provides low and stable latency for the image and video frame classification problems, and shows the improvement in accuracy and latency over ResNet [CVPR-16], MCDNN [MobiSys-16], MobileNets [Google-17], NestDNN [MobiCom-18], and MSDNet [ICLR-18].","PeriodicalId":263540,"journal":{"name":"ACM Trans. Sens. Networks","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"ApproxNet: Content and Contention-Aware Video Object Classification System for Embedded Clients\",\"authors\":\"Xukan Ran, Rakesh Kumar\",\"doi\":\"10.1145/3463530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Videos take a lot of time to transport over the network, hence running analytics on the live video on embedded or mobile devices has become an important system driver. Considering such devices, e.g., surveillance cameras or AR/VR gadgets, are resource constrained, although there has been significant work in creating lightweight deep neural networks (DNNs) for such clients, none of these can adapt to changing runtime conditions, e.g., changes in resource availability on the device, the content characteristics, or requirements from the user. In this article, we introduce ApproxNet, a video object classification system for embedded or mobile clients. It enables novel dynamic approximation techniques to achieve desired inference latency and accuracy trade-off under changing runtime conditions. It achieves this by enabling two approximation knobs within a single DNN model rather than creating and maintaining an ensemble of models, e.g., MCDNN [MobiSys-16]. We show that ApproxNet can adapt seamlessly at runtime to these changes, provides low and stable latency for the image and video frame classification problems, and shows the improvement in accuracy and latency over ResNet [CVPR-16], MCDNN [MobiSys-16], MobileNets [Google-17], NestDNN [MobiCom-18], and MSDNet [ICLR-18].\",\"PeriodicalId\":263540,\"journal\":{\"name\":\"ACM Trans. Sens. Networks\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Trans. Sens. Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3463530\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Sens. Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3463530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

视频在网络上传输需要花费大量时间,因此在嵌入式或移动设备上对实时视频运行分析已成为一个重要的系统驱动程序。考虑到这些设备,例如监控摄像头或AR/VR设备,资源有限,尽管在为这些客户端创建轻量级深度神经网络(dnn)方面已经进行了大量工作,但这些都不能适应不断变化的运行时条件,例如设备上资源可用性的变化,内容特征或用户需求。在本文中,我们介绍了一个用于嵌入式或移动客户端的视频对象分类系统ApproxNet。它使新的动态近似技术能够在不断变化的运行时条件下实现所需的推理延迟和准确性权衡。它通过在单个DNN模型中启用两个近似旋钮来实现这一点,而不是创建和维护模型的集合,例如MCDNN [MobiSys-16]。我们的研究表明,ApproxNet可以在运行时无缝地适应这些变化,为图像和视频帧分类问题提供低而稳定的延迟,并且与ResNet [CVPR-16], MCDNN [MobiSys-16], MobileNets [Google-17], NestDNN [MobiCom-18]和MSDNet [ICLR-18]相比,准确度和延迟有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ApproxNet: Content and Contention-Aware Video Object Classification System for Embedded Clients
Videos take a lot of time to transport over the network, hence running analytics on the live video on embedded or mobile devices has become an important system driver. Considering such devices, e.g., surveillance cameras or AR/VR gadgets, are resource constrained, although there has been significant work in creating lightweight deep neural networks (DNNs) for such clients, none of these can adapt to changing runtime conditions, e.g., changes in resource availability on the device, the content characteristics, or requirements from the user. In this article, we introduce ApproxNet, a video object classification system for embedded or mobile clients. It enables novel dynamic approximation techniques to achieve desired inference latency and accuracy trade-off under changing runtime conditions. It achieves this by enabling two approximation knobs within a single DNN model rather than creating and maintaining an ensemble of models, e.g., MCDNN [MobiSys-16]. We show that ApproxNet can adapt seamlessly at runtime to these changes, provides low and stable latency for the image and video frame classification problems, and shows the improvement in accuracy and latency over ResNet [CVPR-16], MCDNN [MobiSys-16], MobileNets [Google-17], NestDNN [MobiCom-18], and MSDNet [ICLR-18].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信