复合材料的深度还原

Shiteng Chen, Periklis A. Papakonstantinou
{"title":"复合材料的深度还原","authors":"Shiteng Chen, Periklis A. Papakonstantinou","doi":"10.1109/FOCS.2016.20","DOIUrl":null,"url":null,"abstract":"We obtain a new depth-reduction construction, which implies a super-exponential improvement in the depth lower bound separating NEXP from non-uniform ACC. In particular, we show that every circuit with AND, OR, NOT, and MODm gates, m ε Z+, of polynomial size and depth d can be reduced to a depth-2, SYM-AND, circuit of size 2(log n)O(d). This is an exponential size improvement over the traditional Yao-Beigel-Tarui, which has size blowup 2(log n)2O(d). Therefore, depth-reduction for composite m matches the size of the Allender-Hertrampf construction for primes from 1989. One immediate implication of depth reduction is an improvement of the depth from o(loglog n) to o(log n/loglog n), in Williams' program for ACC circuit lower bounds against NEXP. This is just short of O(log n/loglog n) and thus pushes William's program to the NC1 barrier, since NC1 is contained in ACC of depth O(log n/loglog n). A second, but non-immediate, implication regards the strengthening of the ACC lower bound in the Chattopadhyay-Santhanam interactive compression setting.","PeriodicalId":414001,"journal":{"name":"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Depth-Reduction for Composites\",\"authors\":\"Shiteng Chen, Periklis A. Papakonstantinou\",\"doi\":\"10.1109/FOCS.2016.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain a new depth-reduction construction, which implies a super-exponential improvement in the depth lower bound separating NEXP from non-uniform ACC. In particular, we show that every circuit with AND, OR, NOT, and MODm gates, m ε Z+, of polynomial size and depth d can be reduced to a depth-2, SYM-AND, circuit of size 2(log n)O(d). This is an exponential size improvement over the traditional Yao-Beigel-Tarui, which has size blowup 2(log n)2O(d). Therefore, depth-reduction for composite m matches the size of the Allender-Hertrampf construction for primes from 1989. One immediate implication of depth reduction is an improvement of the depth from o(loglog n) to o(log n/loglog n), in Williams' program for ACC circuit lower bounds against NEXP. This is just short of O(log n/loglog n) and thus pushes William's program to the NC1 barrier, since NC1 is contained in ACC of depth O(log n/loglog n). A second, but non-immediate, implication regards the strengthening of the ACC lower bound in the Chattopadhyay-Santhanam interactive compression setting.\",\"PeriodicalId\":414001,\"journal\":{\"name\":\"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FOCS.2016.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2016.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

我们得到了一个新的深度缩减结构,这意味着将NEXP与非均匀ACC分离的深度下界有了超指数的改进。特别是,我们证明了每个具有与、或、非和MODm门的电路,m ε Z+,多项式大小和深度为d,可以简化为一个深度为2的SYM-AND电路,大小为2(log n)O(d)。与传统的Yao-Beigel-Tarui相比,这是一个指数级的改进,传统的Yao-Beigel-Tarui的大小是2(log n)2O(d)。因此,复合m的深度缩减与1989年以来质数的Allender-Hertrampf构造的大小相匹配。在Williams针对NEXP的ACC电路下界程序中,深度减小的一个直接含义是深度从0 (loglog n)提高到o(log n/loglog n)。这只差0 (log n/loglog n),因此将William的程序推向了NC1障碍,因为NC1包含在深度为O(log n/loglog n)的ACC中。第二个含义(但不是直接的)是关于在Chattopadhyay-Santhanam交互压缩设置中ACC下界的加强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Depth-Reduction for Composites
We obtain a new depth-reduction construction, which implies a super-exponential improvement in the depth lower bound separating NEXP from non-uniform ACC. In particular, we show that every circuit with AND, OR, NOT, and MODm gates, m ε Z+, of polynomial size and depth d can be reduced to a depth-2, SYM-AND, circuit of size 2(log n)O(d). This is an exponential size improvement over the traditional Yao-Beigel-Tarui, which has size blowup 2(log n)2O(d). Therefore, depth-reduction for composite m matches the size of the Allender-Hertrampf construction for primes from 1989. One immediate implication of depth reduction is an improvement of the depth from o(loglog n) to o(log n/loglog n), in Williams' program for ACC circuit lower bounds against NEXP. This is just short of O(log n/loglog n) and thus pushes William's program to the NC1 barrier, since NC1 is contained in ACC of depth O(log n/loglog n). A second, but non-immediate, implication regards the strengthening of the ACC lower bound in the Chattopadhyay-Santhanam interactive compression setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信