表征不确定电路尺寸

M. Karchmer, A. Wigderson
{"title":"表征不确定电路尺寸","authors":"M. Karchmer, A. Wigderson","doi":"10.1145/167088.167230","DOIUrl":null,"url":null,"abstract":"Consider the following simple communication problem. Fix a universe U and a family Q of subsets of U. Players I and II receive, respectively, an element a E U and a subset A E Q. Their task is to find a subset B of U such that 1A fl B/ is even and a E B. With every Boolean function f we associate a collection fl~ of subsets of U = f'1 (0), and prove that the (one round) communication complexity of the problem it defines completely determines the szze of the smallest nondeterministic circuit for f. We propose a linear algebraic variant to the general approximation method of Razborov, whtch has exponentially smaller description. We use it to derive four different combinatorial problems (like the one above) that characterize non-uniform NP. These are tight, in the sense that they can be used to prove super-linear circuit size lower bounds. Comb~ned with Ra.zborov]s method, they present a purely combinatorial framework in which to study the P vs. NP vs. co – NP question.","PeriodicalId":280602,"journal":{"name":"Proceedings of the twenty-fifth annual ACM symposium on Theory of Computing","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Characterizing non-deterministic circuit size\",\"authors\":\"M. Karchmer, A. Wigderson\",\"doi\":\"10.1145/167088.167230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider the following simple communication problem. Fix a universe U and a family Q of subsets of U. Players I and II receive, respectively, an element a E U and a subset A E Q. Their task is to find a subset B of U such that 1A fl B/ is even and a E B. With every Boolean function f we associate a collection fl~ of subsets of U = f'1 (0), and prove that the (one round) communication complexity of the problem it defines completely determines the szze of the smallest nondeterministic circuit for f. We propose a linear algebraic variant to the general approximation method of Razborov, whtch has exponentially smaller description. We use it to derive four different combinatorial problems (like the one above) that characterize non-uniform NP. These are tight, in the sense that they can be used to prove super-linear circuit size lower bounds. Comb~ned with Ra.zborov]s method, they present a purely combinatorial framework in which to study the P vs. NP vs. co – NP question.\",\"PeriodicalId\":280602,\"journal\":{\"name\":\"Proceedings of the twenty-fifth annual ACM symposium on Theory of Computing\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the twenty-fifth annual ACM symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/167088.167230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the twenty-fifth annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/167088.167230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

考虑下面这个简单的沟通问题。确定U的子集的一个集合U和一个族Q,参与者I和II分别收到一个元素ea U和一个子集ea Q,他们的任务是找到U的一个子集B,使得1A fl B/是偶数,并且是一个E B。对于每个布尔函数f,我们将U的子集集合fl~ = f'1 (0),并证明了它所定义的问题的(一轮)通信复杂度完全决定了f的最小不确定性电路的大小。我们提出了Razborov一般近似方法的线性代数变型,它具有指数级的小描述。我们用它来推导四个不同的组合问题(如上面的一个),它们具有非一致NP的特征。这些是紧密的,因为它们可以用来证明超线性电路尺寸的下界。用Ra梳~ned。zborov的方法,他们提出了一个纯粹的组合框架来研究P、NP、co - NP问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterizing non-deterministic circuit size
Consider the following simple communication problem. Fix a universe U and a family Q of subsets of U. Players I and II receive, respectively, an element a E U and a subset A E Q. Their task is to find a subset B of U such that 1A fl B/ is even and a E B. With every Boolean function f we associate a collection fl~ of subsets of U = f'1 (0), and prove that the (one round) communication complexity of the problem it defines completely determines the szze of the smallest nondeterministic circuit for f. We propose a linear algebraic variant to the general approximation method of Razborov, whtch has exponentially smaller description. We use it to derive four different combinatorial problems (like the one above) that characterize non-uniform NP. These are tight, in the sense that they can be used to prove super-linear circuit size lower bounds. Comb~ned with Ra.zborov]s method, they present a purely combinatorial framework in which to study the P vs. NP vs. co – NP question.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信