{"title":"粒子群优化的搜索过程可视化","authors":"Yong-Hyuk Kim, K. Lee, Yourim Yoon","doi":"10.1145/1569901.1569909","DOIUrl":null,"url":null,"abstract":"It is a hard problem to understand the search process of particle swarm optimization over high-dimensional domain. The visualization depicts the total search process and then it will allow better understanding of how to tune the algorithm. For the investigation, we adopt Sammon's mapping, which is a well-known distance-preserving mapping. We demonstrate the usefulness of the proposed methodology by applying it to some function optimization problems.","PeriodicalId":193093,"journal":{"name":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Visualizing the search process of particle swarm optimization\",\"authors\":\"Yong-Hyuk Kim, K. Lee, Yourim Yoon\",\"doi\":\"10.1145/1569901.1569909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is a hard problem to understand the search process of particle swarm optimization over high-dimensional domain. The visualization depicts the total search process and then it will allow better understanding of how to tune the algorithm. For the investigation, we adopt Sammon's mapping, which is a well-known distance-preserving mapping. We demonstrate the usefulness of the proposed methodology by applying it to some function optimization problems.\",\"PeriodicalId\":193093,\"journal\":{\"name\":\"Proceedings of the 11th Annual conference on Genetic and evolutionary computation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th Annual conference on Genetic and evolutionary computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1569901.1569909\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1569901.1569909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Visualizing the search process of particle swarm optimization
It is a hard problem to understand the search process of particle swarm optimization over high-dimensional domain. The visualization depicts the total search process and then it will allow better understanding of how to tune the algorithm. For the investigation, we adopt Sammon's mapping, which is a well-known distance-preserving mapping. We demonstrate the usefulness of the proposed methodology by applying it to some function optimization problems.