{"title":"基于熵的网络异常检测","authors":"C. Callegari, S. Giordano, M. Pagano","doi":"10.1109/ICCNC.2017.7876150","DOIUrl":null,"url":null,"abstract":"Anomaly-based Intrusion Detection is a key research topic in network security due to its ability to face unknown attacks and new security threats. In this paper we propose a novel intrusion detection system that performs anomaly detection by studying the variation in the entropy associated to the network traffic. To this aim, the traffic is first aggregated by means of random data structures (namely three-dimension reversible sketches) and then the entropy of different traffic descriptors is computed by using several definitions of entropy. The experimental results obtained over the MAWILab dataset validate the system and demonstrate the effectiveness of our proposal.","PeriodicalId":135028,"journal":{"name":"2017 International Conference on Computing, Networking and Communications (ICNC)","volume":"2015 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Entropy-based network anomaly Detection\",\"authors\":\"C. Callegari, S. Giordano, M. Pagano\",\"doi\":\"10.1109/ICCNC.2017.7876150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anomaly-based Intrusion Detection is a key research topic in network security due to its ability to face unknown attacks and new security threats. In this paper we propose a novel intrusion detection system that performs anomaly detection by studying the variation in the entropy associated to the network traffic. To this aim, the traffic is first aggregated by means of random data structures (namely three-dimension reversible sketches) and then the entropy of different traffic descriptors is computed by using several definitions of entropy. The experimental results obtained over the MAWILab dataset validate the system and demonstrate the effectiveness of our proposal.\",\"PeriodicalId\":135028,\"journal\":{\"name\":\"2017 International Conference on Computing, Networking and Communications (ICNC)\",\"volume\":\"2015 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Computing, Networking and Communications (ICNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCNC.2017.7876150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Computing, Networking and Communications (ICNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCNC.2017.7876150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Anomaly-based Intrusion Detection is a key research topic in network security due to its ability to face unknown attacks and new security threats. In this paper we propose a novel intrusion detection system that performs anomaly detection by studying the variation in the entropy associated to the network traffic. To this aim, the traffic is first aggregated by means of random data structures (namely three-dimension reversible sketches) and then the entropy of different traffic descriptors is computed by using several definitions of entropy. The experimental results obtained over the MAWILab dataset validate the system and demonstrate the effectiveness of our proposal.