利用前馈神经网络对B-757内部干扰路径损耗测量进行分类和预测(2005年12月准备)

M. Jafri, J. Ely, L. Vahala
{"title":"利用前馈神经网络对B-757内部干扰路径损耗测量进行分类和预测(2005年12月准备)","authors":"M. Jafri, J. Ely, L. Vahala","doi":"10.1109/CEFC-06.2006.1632993","DOIUrl":null,"url":null,"abstract":"Neural network modeling is introduced in this paper to classify and predict interference pathloss measurements on a Boeing 757 airplane. Interference patterns inside the aircraft are classified and predicted based on the locations of the doors, windows, aircraft structure and the aircraft system-of-concern. Modeled results are compared with measured data and a plan is proposed to enhance the modeling for better prediction of electromagnetic coupling problems inside aircraft","PeriodicalId":262549,"journal":{"name":"2006 12th Biennial IEEE Conference on Electromagnetic Field Computation","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Classification and Prediction of Interference Pathloss Measurements Inside B-757 Using Feed Forward Neural Networks (Prepared December 2005)\",\"authors\":\"M. Jafri, J. Ely, L. Vahala\",\"doi\":\"10.1109/CEFC-06.2006.1632993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural network modeling is introduced in this paper to classify and predict interference pathloss measurements on a Boeing 757 airplane. Interference patterns inside the aircraft are classified and predicted based on the locations of the doors, windows, aircraft structure and the aircraft system-of-concern. Modeled results are compared with measured data and a plan is proposed to enhance the modeling for better prediction of electromagnetic coupling problems inside aircraft\",\"PeriodicalId\":262549,\"journal\":{\"name\":\"2006 12th Biennial IEEE Conference on Electromagnetic Field Computation\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 12th Biennial IEEE Conference on Electromagnetic Field Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEFC-06.2006.1632993\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 12th Biennial IEEE Conference on Electromagnetic Field Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEFC-06.2006.1632993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

采用神经网络建模方法对波音757飞机的干扰路径损耗测量数据进行分类和预测。根据舱门、窗户、飞机结构和飞机关注系统的位置,对飞机内部的干扰模式进行分类和预测。将建模结果与实测数据进行了比较,并提出了改进建模的方案,以更好地预测飞机内部电磁耦合问题
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification and Prediction of Interference Pathloss Measurements Inside B-757 Using Feed Forward Neural Networks (Prepared December 2005)
Neural network modeling is introduced in this paper to classify and predict interference pathloss measurements on a Boeing 757 airplane. Interference patterns inside the aircraft are classified and predicted based on the locations of the doors, windows, aircraft structure and the aircraft system-of-concern. Modeled results are compared with measured data and a plan is proposed to enhance the modeling for better prediction of electromagnetic coupling problems inside aircraft
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信