动态度的光谱解释及其应用

Nguyen-Bac Dang, C. Favre
{"title":"动态度的光谱解释及其应用","authors":"Nguyen-Bac Dang, C. Favre","doi":"10.4007/annals.2021.194.1.5","DOIUrl":null,"url":null,"abstract":"We prove that dynamical degrees of rational self-maps on projective varieties can be interpreted as spectral radii of naturally defined operators on suitable Banach spaces. Generalizing Shokurov's notion of b-divisors, we consider the space of b-classes of higher codimension cycles, and endow this space with various Banach norms. Building on these constructions, we design a natural extension to higher dimension of the Picard-Manin space introduced by Cantat and Boucksom-Favre-Jonsson in the case of surfaces. We prove a version of the Hodge index theorem, and a surprising compactness result in this Banach space. We use these two theorems to infer a precise control of the sequence of degrees of iterates of a map under the assumption that the square of the first dynamical degree is strictly larger than the second dynamical degree. As a consequence, we obtain that the dynamical degrees of an automorphism of the affine 3-space are all algebraic numbers.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Spectral interpretations of dynamical degrees and\\n applications\",\"authors\":\"Nguyen-Bac Dang, C. Favre\",\"doi\":\"10.4007/annals.2021.194.1.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that dynamical degrees of rational self-maps on projective varieties can be interpreted as spectral radii of naturally defined operators on suitable Banach spaces. Generalizing Shokurov's notion of b-divisors, we consider the space of b-classes of higher codimension cycles, and endow this space with various Banach norms. Building on these constructions, we design a natural extension to higher dimension of the Picard-Manin space introduced by Cantat and Boucksom-Favre-Jonsson in the case of surfaces. We prove a version of the Hodge index theorem, and a surprising compactness result in this Banach space. We use these two theorems to infer a precise control of the sequence of degrees of iterates of a map under the assumption that the square of the first dynamical degree is strictly larger than the second dynamical degree. As a consequence, we obtain that the dynamical degrees of an automorphism of the affine 3-space are all algebraic numbers.\",\"PeriodicalId\":278201,\"journal\":{\"name\":\"arXiv: Algebraic Geometry\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4007/annals.2021.194.1.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4007/annals.2021.194.1.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

证明了在适当的Banach空间上,投影变体上的有理自映射的动态度可以解释为自然定义算子的谱半径。推广Shokurov的b-除数概念,考虑高余维环的b类空间,并赋予该空间各种Banach范数。在这些结构的基础上,我们设计了一个自然延伸到更高维度的Picard-Manin空间,这是Cantat和Boucksom-Favre-Jonsson在表面的情况下引入的。我们证明了Hodge指数定理的一个版本,并在这个Banach空间中得到了一个惊人的紧性结果。我们利用这两个定理,在第一次动态次的平方严格大于第二次动态次的假设下,推导出映射迭代次序列的精确控制。由此得到仿射三维空间的自同构的动态度都是代数数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral interpretations of dynamical degrees and applications
We prove that dynamical degrees of rational self-maps on projective varieties can be interpreted as spectral radii of naturally defined operators on suitable Banach spaces. Generalizing Shokurov's notion of b-divisors, we consider the space of b-classes of higher codimension cycles, and endow this space with various Banach norms. Building on these constructions, we design a natural extension to higher dimension of the Picard-Manin space introduced by Cantat and Boucksom-Favre-Jonsson in the case of surfaces. We prove a version of the Hodge index theorem, and a surprising compactness result in this Banach space. We use these two theorems to infer a precise control of the sequence of degrees of iterates of a map under the assumption that the square of the first dynamical degree is strictly larger than the second dynamical degree. As a consequence, we obtain that the dynamical degrees of an automorphism of the affine 3-space are all algebraic numbers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信