无状态计算

D. Dolev, Michael Erdmann, Neil Lutz, Michael Schapira, A. Zair
{"title":"无状态计算","authors":"D. Dolev, Michael Erdmann, Neil Lutz, Michael Schapira, A. Zair","doi":"10.1145/3087801.3087854","DOIUrl":null,"url":null,"abstract":"We present and explore a model of stateless and self-stabilizing distributed computation, inspired by real-world applications such as routing on today's Internet. Processors in our model do not have an internal state, but rather interact by repeatedly mapping incoming messages (\"labels\") to outgoing messages and output values. While seemingly too restrictive to be of interest, stateless computation encompasses both classical game-theoretic notions of strategic interaction and a broad range of practical applications (e.g., Internet protocols, circuits, diffusion of technologies in social networks). Our main technical contribution is a general impossibility result for stateless self-stabilization in our model, showing that even modest asynchrony (with wait times that are linear in the number of processors) can prevent a stateless protocol from reaching a stable global configuration. Furthermore, we present hardness results for verifying stateless self-stabilization. We also address several aspects of the computational power of stateless protocols. Most significantly, we show that short messages (of length that is logarithmic in the number of processors) yield substantial computational power, even on very poorly connected topologies.","PeriodicalId":324970,"journal":{"name":"Proceedings of the ACM Symposium on Principles of Distributed Computing","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Stateless Computation\",\"authors\":\"D. Dolev, Michael Erdmann, Neil Lutz, Michael Schapira, A. Zair\",\"doi\":\"10.1145/3087801.3087854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present and explore a model of stateless and self-stabilizing distributed computation, inspired by real-world applications such as routing on today's Internet. Processors in our model do not have an internal state, but rather interact by repeatedly mapping incoming messages (\\\"labels\\\") to outgoing messages and output values. While seemingly too restrictive to be of interest, stateless computation encompasses both classical game-theoretic notions of strategic interaction and a broad range of practical applications (e.g., Internet protocols, circuits, diffusion of technologies in social networks). Our main technical contribution is a general impossibility result for stateless self-stabilization in our model, showing that even modest asynchrony (with wait times that are linear in the number of processors) can prevent a stateless protocol from reaching a stable global configuration. Furthermore, we present hardness results for verifying stateless self-stabilization. We also address several aspects of the computational power of stateless protocols. Most significantly, we show that short messages (of length that is logarithmic in the number of processors) yield substantial computational power, even on very poorly connected topologies.\",\"PeriodicalId\":324970,\"journal\":{\"name\":\"Proceedings of the ACM Symposium on Principles of Distributed Computing\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM Symposium on Principles of Distributed Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3087801.3087854\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Symposium on Principles of Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3087801.3087854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们提出并探索了一种无状态和自稳定的分布式计算模型,其灵感来自于当今互联网上的路由等现实应用。我们模型中的处理器没有内部状态,而是通过重复地将传入消息(“标签”)映射到传出消息和输出值来进行交互。无状态计算虽然看起来过于局限而不值得关注,但它既包含了战略交互的经典博弈论概念,也包含了广泛的实际应用(例如,互联网协议、电路、社交网络中的技术扩散)。我们的主要技术贡献是我们模型中无状态自稳定的一般不可能结果,表明即使是适度的异步(等待时间在处理器数量上是线性的)也可以阻止无状态协议达到稳定的全局配置。此外,我们给出了验证无状态自稳定的硬度结果。我们还讨论了无状态协议的计算能力的几个方面。最重要的是,我们展示了短消息(处理器数量的对数长度)产生大量的计算能力,即使在连接非常差的拓扑上也是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stateless Computation
We present and explore a model of stateless and self-stabilizing distributed computation, inspired by real-world applications such as routing on today's Internet. Processors in our model do not have an internal state, but rather interact by repeatedly mapping incoming messages ("labels") to outgoing messages and output values. While seemingly too restrictive to be of interest, stateless computation encompasses both classical game-theoretic notions of strategic interaction and a broad range of practical applications (e.g., Internet protocols, circuits, diffusion of technologies in social networks). Our main technical contribution is a general impossibility result for stateless self-stabilization in our model, showing that even modest asynchrony (with wait times that are linear in the number of processors) can prevent a stateless protocol from reaching a stable global configuration. Furthermore, we present hardness results for verifying stateless self-stabilization. We also address several aspects of the computational power of stateless protocols. Most significantly, we show that short messages (of length that is logarithmic in the number of processors) yield substantial computational power, even on very poorly connected topologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信