多路网络中多结构关注的链路预测

Shangrong Huang, Quanyu Ma, Chao Yang, Yazhou Yao
{"title":"多路网络中多结构关注的链路预测","authors":"Shangrong Huang, Quanyu Ma, Chao Yang, Yazhou Yao","doi":"10.1109/IJCNN52387.2021.9533609","DOIUrl":null,"url":null,"abstract":"Many real networks can be viewed as multiplex networks with more than one layers. As different layers are usually not independent from each other, they can provide complementary information in the task of link prediction. In this paper, with the help of attention mechanism, we dig the structural correlations among different layers of the multiplex network as well as the network structural information of the target layer to make more precise link predictions. Specifically, we introduce three different attentions, namely the intra-layer distance/degree attention, the intra-layer neighbourhood attention, and the interlayer structural attention, to calculate both the influence among nodes in the same layer and the link correlations in different layers. Compared with other state-of-the art methods which usually require the information of node attributes or edge types, we only utilize the topological information of the network and thus provide a more general link prediction solution for multiplex network. We conduct comprehensive experiments on several real-world datatsets of different scales. By comparing with the state-of-the-art link prediction algorithms, we show the advantages of our algorithm, and the effectiveness of different attentions. Also, through visual case studies we uncover some intuitions about the relationship between the graph structure and the existence of a link. We make our source code anonymously available at: (will be released after review)","PeriodicalId":396583,"journal":{"name":"2021 International Joint Conference on Neural Networks (IJCNN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Link Prediction with Multiple Structural Attentions in Multiplex Networks\",\"authors\":\"Shangrong Huang, Quanyu Ma, Chao Yang, Yazhou Yao\",\"doi\":\"10.1109/IJCNN52387.2021.9533609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many real networks can be viewed as multiplex networks with more than one layers. As different layers are usually not independent from each other, they can provide complementary information in the task of link prediction. In this paper, with the help of attention mechanism, we dig the structural correlations among different layers of the multiplex network as well as the network structural information of the target layer to make more precise link predictions. Specifically, we introduce three different attentions, namely the intra-layer distance/degree attention, the intra-layer neighbourhood attention, and the interlayer structural attention, to calculate both the influence among nodes in the same layer and the link correlations in different layers. Compared with other state-of-the art methods which usually require the information of node attributes or edge types, we only utilize the topological information of the network and thus provide a more general link prediction solution for multiplex network. We conduct comprehensive experiments on several real-world datatsets of different scales. By comparing with the state-of-the-art link prediction algorithms, we show the advantages of our algorithm, and the effectiveness of different attentions. Also, through visual case studies we uncover some intuitions about the relationship between the graph structure and the existence of a link. We make our source code anonymously available at: (will be released after review)\",\"PeriodicalId\":396583,\"journal\":{\"name\":\"2021 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN52387.2021.9533609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN52387.2021.9533609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

许多真实的网络可以看作是具有多个层的多路网络。由于不同的层之间通常不是相互独立的,所以它们可以在链路预测任务中提供互补的信息。本文利用注意机制,挖掘多路网络各层之间的结构相关性以及目标层的网络结构信息,从而进行更精确的链路预测。具体来说,我们引入了三种不同的关注,即层内距离/度关注、层内邻域关注和层间结构关注,以计算同一层节点之间的影响和不同层之间的链路相关性。与现有的需要节点属性或边缘类型信息的方法相比,我们只利用了网络的拓扑信息,从而为复用网络提供了一种更通用的链路预测方案。我们在几个不同规模的真实数据集上进行了全面的实验。通过与目前最先进的链路预测算法的比较,我们展示了我们的算法的优点,以及不同关注点的有效性。此外,通过可视化案例研究,我们揭示了图结构与链接存在之间关系的一些直觉。我们将源代码匿名发布在:(将在审查后发布)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Link Prediction with Multiple Structural Attentions in Multiplex Networks
Many real networks can be viewed as multiplex networks with more than one layers. As different layers are usually not independent from each other, they can provide complementary information in the task of link prediction. In this paper, with the help of attention mechanism, we dig the structural correlations among different layers of the multiplex network as well as the network structural information of the target layer to make more precise link predictions. Specifically, we introduce three different attentions, namely the intra-layer distance/degree attention, the intra-layer neighbourhood attention, and the interlayer structural attention, to calculate both the influence among nodes in the same layer and the link correlations in different layers. Compared with other state-of-the art methods which usually require the information of node attributes or edge types, we only utilize the topological information of the network and thus provide a more general link prediction solution for multiplex network. We conduct comprehensive experiments on several real-world datatsets of different scales. By comparing with the state-of-the-art link prediction algorithms, we show the advantages of our algorithm, and the effectiveness of different attentions. Also, through visual case studies we uncover some intuitions about the relationship between the graph structure and the existence of a link. We make our source code anonymously available at: (will be released after review)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信