{"title":"“无限”","authors":"Brittany Kopman","doi":"10.2307/j.ctt1hfr0s3.4","DOIUrl":null,"url":null,"abstract":". Let S be a smooth projective surface. Using correspondences, we construct an infinite dimensional Lie algebra that acts on the direct sum of the cohomology groups of the incidence Hilbert schemes S [ m,m +1] . The algebra is related to an extension of an infinite dimensional Heisenberg algebra. The space e H S is a highest weight representation of this algebra. Our result provides a representation-theoretic interpretation of Cheah’s generating function of Betti numbers of the incidence Hilbert schemes. As a consequence, an additive basis of H ∗ ( S [ m,m +1] ) is obtained.","PeriodicalId":373777,"journal":{"name":"Fueling Culture","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"“Infinite”\",\"authors\":\"Brittany Kopman\",\"doi\":\"10.2307/j.ctt1hfr0s3.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Let S be a smooth projective surface. Using correspondences, we construct an infinite dimensional Lie algebra that acts on the direct sum of the cohomology groups of the incidence Hilbert schemes S [ m,m +1] . The algebra is related to an extension of an infinite dimensional Heisenberg algebra. The space e H S is a highest weight representation of this algebra. Our result provides a representation-theoretic interpretation of Cheah’s generating function of Betti numbers of the incidence Hilbert schemes. As a consequence, an additive basis of H ∗ ( S [ m,m +1] ) is obtained.\",\"PeriodicalId\":373777,\"journal\":{\"name\":\"Fueling Culture\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fueling Culture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2307/j.ctt1hfr0s3.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fueling Culture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctt1hfr0s3.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
。设S是光滑的投影曲面。利用对应关系,构造了作用于关联Hilbert格式S [m,m +1]的上同调群的直和的无限维李代数。该代数与无限维海森堡代数的扩展有关。空间ehs是这个代数的最高权值表示。我们的结果提供了一个表示理论的解释Cheah的产生函数的Betti数的关联希尔伯特格式。由此,得到了H * (S [m,m +1])的加性基。
. Let S be a smooth projective surface. Using correspondences, we construct an infinite dimensional Lie algebra that acts on the direct sum of the cohomology groups of the incidence Hilbert schemes S [ m,m +1] . The algebra is related to an extension of an infinite dimensional Heisenberg algebra. The space e H S is a highest weight representation of this algebra. Our result provides a representation-theoretic interpretation of Cheah’s generating function of Betti numbers of the incidence Hilbert schemes. As a consequence, an additive basis of H ∗ ( S [ m,m +1] ) is obtained.