“无限”

Brittany Kopman
{"title":"“无限”","authors":"Brittany Kopman","doi":"10.2307/j.ctt1hfr0s3.4","DOIUrl":null,"url":null,"abstract":". Let S be a smooth projective surface. Using correspondences, we construct an infinite dimensional Lie algebra that acts on the direct sum of the cohomology groups of the incidence Hilbert schemes S [ m,m +1] . The algebra is related to an extension of an infinite dimensional Heisenberg algebra. The space e H S is a highest weight representation of this algebra. Our result provides a representation-theoretic interpretation of Cheah’s generating function of Betti numbers of the incidence Hilbert schemes. As a consequence, an additive basis of H ∗ ( S [ m,m +1] ) is obtained.","PeriodicalId":373777,"journal":{"name":"Fueling Culture","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"“Infinite”\",\"authors\":\"Brittany Kopman\",\"doi\":\"10.2307/j.ctt1hfr0s3.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Let S be a smooth projective surface. Using correspondences, we construct an infinite dimensional Lie algebra that acts on the direct sum of the cohomology groups of the incidence Hilbert schemes S [ m,m +1] . The algebra is related to an extension of an infinite dimensional Heisenberg algebra. The space e H S is a highest weight representation of this algebra. Our result provides a representation-theoretic interpretation of Cheah’s generating function of Betti numbers of the incidence Hilbert schemes. As a consequence, an additive basis of H ∗ ( S [ m,m +1] ) is obtained.\",\"PeriodicalId\":373777,\"journal\":{\"name\":\"Fueling Culture\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fueling Culture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2307/j.ctt1hfr0s3.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fueling Culture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctt1hfr0s3.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

。设S是光滑的投影曲面。利用对应关系,构造了作用于关联Hilbert格式S [m,m +1]的上同调群的直和的无限维李代数。该代数与无限维海森堡代数的扩展有关。空间ehs是这个代数的最高权值表示。我们的结果提供了一个表示理论的解释Cheah的产生函数的Betti数的关联希尔伯特格式。由此,得到了H * (S [m,m +1])的加性基。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
“Infinite”
. Let S be a smooth projective surface. Using correspondences, we construct an infinite dimensional Lie algebra that acts on the direct sum of the cohomology groups of the incidence Hilbert schemes S [ m,m +1] . The algebra is related to an extension of an infinite dimensional Heisenberg algebra. The space e H S is a highest weight representation of this algebra. Our result provides a representation-theoretic interpretation of Cheah’s generating function of Betti numbers of the incidence Hilbert schemes. As a consequence, an additive basis of H ∗ ( S [ m,m +1] ) is obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信