基于方面的卷积神经网络应用评论情感分析

Putri Arta Aritonang, M. Johan, Iwan Prasetiawan
{"title":"基于方面的卷积神经网络应用评论情感分析","authors":"Putri Arta Aritonang, M. Johan, Iwan Prasetiawan","doi":"10.31937/si.v13i1.2684","DOIUrl":null,"url":null,"abstract":"As an obligatory application during the COVID-19 pandemic by Indonesians, PeduliLindungi must have provided outstanding quality services to its users. However, as of December 2021, users’ sentiment toward the quality and service of the PeduliLindungi application was still low, with an application rating of 3.6 out of 5 on the Google Play Store. This study uses text mining techniques for the Aspect-Based Sentiment Analysis (ABSA) task in the PeduliLindungi application review, a sentiment analysis task based on the aspect category of the application. This study aims to classify the users’ sentiment on aspects of the application and provide insight and knowledge to improve the quality of the PeduliLindungi application. The ABSA method used in this study is the classification of aspects and sentiments using the Convolutional Neural Network (CNN) algorithm. The results showed that the CNN model could produce such good performance with an f1 score of 92.23% in the aspect classification and 95.13% in the sentiment classification. The results of user sentiment modelling showed the dominance of negative sentiment in the eight aspects of the application, namely Visual Experience, Scan – Check-in/Out, Vaccine Certificate, eHac, COVID Test, Register/Login, Performance and Stability, and Privacy, Data, and Security. \nIndex Terms—Aspect-Based Sentiment Analysis, Convolution Neural Network, PeduliLindungi, Text Classification, Text Mining.","PeriodicalId":309539,"journal":{"name":"Ultima InfoSys : Jurnal Ilmu Sistem Informasi","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aspect-Based Sentiment Analysis on Application Review using Convolutional Neural Network\",\"authors\":\"Putri Arta Aritonang, M. Johan, Iwan Prasetiawan\",\"doi\":\"10.31937/si.v13i1.2684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As an obligatory application during the COVID-19 pandemic by Indonesians, PeduliLindungi must have provided outstanding quality services to its users. However, as of December 2021, users’ sentiment toward the quality and service of the PeduliLindungi application was still low, with an application rating of 3.6 out of 5 on the Google Play Store. This study uses text mining techniques for the Aspect-Based Sentiment Analysis (ABSA) task in the PeduliLindungi application review, a sentiment analysis task based on the aspect category of the application. This study aims to classify the users’ sentiment on aspects of the application and provide insight and knowledge to improve the quality of the PeduliLindungi application. The ABSA method used in this study is the classification of aspects and sentiments using the Convolutional Neural Network (CNN) algorithm. The results showed that the CNN model could produce such good performance with an f1 score of 92.23% in the aspect classification and 95.13% in the sentiment classification. The results of user sentiment modelling showed the dominance of negative sentiment in the eight aspects of the application, namely Visual Experience, Scan – Check-in/Out, Vaccine Certificate, eHac, COVID Test, Register/Login, Performance and Stability, and Privacy, Data, and Security. \\nIndex Terms—Aspect-Based Sentiment Analysis, Convolution Neural Network, PeduliLindungi, Text Classification, Text Mining.\",\"PeriodicalId\":309539,\"journal\":{\"name\":\"Ultima InfoSys : Jurnal Ilmu Sistem Informasi\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultima InfoSys : Jurnal Ilmu Sistem Informasi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31937/si.v13i1.2684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultima InfoSys : Jurnal Ilmu Sistem Informasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31937/si.v13i1.2684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

PeduliLindungi是印尼人在新冠肺炎疫情期间的强制性应用,为用户提供了卓越的优质服务。但是,截止到2021年12月,用户对PeduliLindungi应用程序的质量和服务的评价仍然很低,在谷歌Play商店的应用程序评分为3.6分(满分为5分)。本研究将文本挖掘技术用于PeduliLindungi应用评审中的基于方面的情感分析(ABSA)任务,这是一个基于应用程序方面类别的情感分析任务。本研究旨在对用户在应用程序各方面的情感进行分类,为提高PeduliLindungi应用程序的质量提供见解和知识。本研究中使用的ABSA方法是使用卷积神经网络(CNN)算法对方面和情感进行分类。结果表明,CNN模型在方面分类和情感分类方面的f1得分分别达到了92.23%和95.13%。用户情绪建模结果显示,负面情绪在应用程序的八个方面占主导地位,即视觉体验、扫描-签入/退出、疫苗证书、eHac、COVID测试、注册/登录、性能和稳定性、隐私、数据和安全。索引术语-基于方面的情感分析,卷积神经网络,PeduliLindungi,文本分类,文本挖掘。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aspect-Based Sentiment Analysis on Application Review using Convolutional Neural Network
As an obligatory application during the COVID-19 pandemic by Indonesians, PeduliLindungi must have provided outstanding quality services to its users. However, as of December 2021, users’ sentiment toward the quality and service of the PeduliLindungi application was still low, with an application rating of 3.6 out of 5 on the Google Play Store. This study uses text mining techniques for the Aspect-Based Sentiment Analysis (ABSA) task in the PeduliLindungi application review, a sentiment analysis task based on the aspect category of the application. This study aims to classify the users’ sentiment on aspects of the application and provide insight and knowledge to improve the quality of the PeduliLindungi application. The ABSA method used in this study is the classification of aspects and sentiments using the Convolutional Neural Network (CNN) algorithm. The results showed that the CNN model could produce such good performance with an f1 score of 92.23% in the aspect classification and 95.13% in the sentiment classification. The results of user sentiment modelling showed the dominance of negative sentiment in the eight aspects of the application, namely Visual Experience, Scan – Check-in/Out, Vaccine Certificate, eHac, COVID Test, Register/Login, Performance and Stability, and Privacy, Data, and Security. Index Terms—Aspect-Based Sentiment Analysis, Convolution Neural Network, PeduliLindungi, Text Classification, Text Mining.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信