提升图像质量评估

Dogancan Temel, G. Al-Regib
{"title":"提升图像质量评估","authors":"Dogancan Temel, G. Al-Regib","doi":"10.1109/MMSP.2016.7813335","DOIUrl":null,"url":null,"abstract":"In this paper, we analyze the effect of boosting in image quality assessment through multi-method fusion. On the contrary of existing studies that propose a single quality estimator, we investigate the generalizability of multi-method fusion as a framework. In addition to support vector machines that are commonly used in the multi-method fusion studies, we propose using neural networks in the boosting. To span different types of image quality assessment algorithms, we use quality estimators based on fidelity, perceptually-extended fidelity, structural similarity, spectral similarity, color, and learning. In the experiments, we perform k-fold cross validation using the LIVE, the multiply distorted LIVE, and the TID 2013 databases and the performance of image quality assessment algorithms are measured via accuracy-, linearity-, and ranking-based metrics. Based on the experiments, we show that boosting methods generally improve the performance of image quality assessment and the level of improvement depends on the type of the boosting algorithm. Our experimental results also indicate that boosting the worst performing quality estimator with two or more methods lead to statistically significant performance enhancements independent of the boosting technique and neural network-based boosting outperforms support vector machine-based boosting when two or more methods are fused.","PeriodicalId":113192,"journal":{"name":"2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Boosting in image quality assessment\",\"authors\":\"Dogancan Temel, G. Al-Regib\",\"doi\":\"10.1109/MMSP.2016.7813335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we analyze the effect of boosting in image quality assessment through multi-method fusion. On the contrary of existing studies that propose a single quality estimator, we investigate the generalizability of multi-method fusion as a framework. In addition to support vector machines that are commonly used in the multi-method fusion studies, we propose using neural networks in the boosting. To span different types of image quality assessment algorithms, we use quality estimators based on fidelity, perceptually-extended fidelity, structural similarity, spectral similarity, color, and learning. In the experiments, we perform k-fold cross validation using the LIVE, the multiply distorted LIVE, and the TID 2013 databases and the performance of image quality assessment algorithms are measured via accuracy-, linearity-, and ranking-based metrics. Based on the experiments, we show that boosting methods generally improve the performance of image quality assessment and the level of improvement depends on the type of the boosting algorithm. Our experimental results also indicate that boosting the worst performing quality estimator with two or more methods lead to statistically significant performance enhancements independent of the boosting technique and neural network-based boosting outperforms support vector machine-based boosting when two or more methods are fused.\",\"PeriodicalId\":113192,\"journal\":{\"name\":\"2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP.2016.7813335\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2016.7813335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文通过多方法融合分析了增强在图像质量评估中的作用。与现有研究提出的单一质量估计量相反,我们研究了多方法融合作为一个框架的可泛化性。除了在多方法融合研究中常用的支持向量机外,我们还建议使用神经网络进行增强。为了跨越不同类型的图像质量评估算法,我们使用基于保真度、感知扩展保真度、结构相似性、光谱相似性、颜色和学习的质量估计器。在实验中,我们使用LIVE、多重失真LIVE和TID 2013数据库进行k倍交叉验证,并通过基于精度、线性和排名的指标来衡量图像质量评估算法的性能。实验表明,增强算法总体上提高了图像质量评估的性能,提高的程度取决于增强算法的类型。我们的实验结果还表明,用两种或两种以上的方法增强性能最差的质量估计器会导致统计上显著的性能增强,而与增强技术无关,当两种或两种以上的方法融合时,基于神经网络的增强优于基于支持向量机的增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boosting in image quality assessment
In this paper, we analyze the effect of boosting in image quality assessment through multi-method fusion. On the contrary of existing studies that propose a single quality estimator, we investigate the generalizability of multi-method fusion as a framework. In addition to support vector machines that are commonly used in the multi-method fusion studies, we propose using neural networks in the boosting. To span different types of image quality assessment algorithms, we use quality estimators based on fidelity, perceptually-extended fidelity, structural similarity, spectral similarity, color, and learning. In the experiments, we perform k-fold cross validation using the LIVE, the multiply distorted LIVE, and the TID 2013 databases and the performance of image quality assessment algorithms are measured via accuracy-, linearity-, and ranking-based metrics. Based on the experiments, we show that boosting methods generally improve the performance of image quality assessment and the level of improvement depends on the type of the boosting algorithm. Our experimental results also indicate that boosting the worst performing quality estimator with two or more methods lead to statistically significant performance enhancements independent of the boosting technique and neural network-based boosting outperforms support vector machine-based boosting when two or more methods are fused.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信