求解多模态问题的均值-方差映射优化评价

J. Rueda, I. Erlich
{"title":"求解多模态问题的均值-方差映射优化评价","authors":"J. Rueda, I. Erlich","doi":"10.1109/SIS.2013.6615153","DOIUrl":null,"url":null,"abstract":"Based on swarm intelligence principles and an enhanced mapping scheme, the extension of the original single-particle mean-variance mapping optimization (MVMO) to its swarm variant (MVMOS) is investigated in this paper. Numerical experiments and comparisons with other heuristic optimization methods, which were conducted on several composition test functions, demonstrate the feasibility and effectiveness of MVMOS when solving multimodal optimization problems. Sensitivity analysis of the algorithm parameters highlights its robust performance.","PeriodicalId":444765,"journal":{"name":"2013 IEEE Symposium on Swarm Intelligence (SIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Evaluation of the mean-variance mapping optimization for solving multimodal problems\",\"authors\":\"J. Rueda, I. Erlich\",\"doi\":\"10.1109/SIS.2013.6615153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on swarm intelligence principles and an enhanced mapping scheme, the extension of the original single-particle mean-variance mapping optimization (MVMO) to its swarm variant (MVMOS) is investigated in this paper. Numerical experiments and comparisons with other heuristic optimization methods, which were conducted on several composition test functions, demonstrate the feasibility and effectiveness of MVMOS when solving multimodal optimization problems. Sensitivity analysis of the algorithm parameters highlights its robust performance.\",\"PeriodicalId\":444765,\"journal\":{\"name\":\"2013 IEEE Symposium on Swarm Intelligence (SIS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Symposium on Swarm Intelligence (SIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIS.2013.6615153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Symposium on Swarm Intelligence (SIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIS.2013.6615153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

基于群体智能原理和一种改进的映射方案,研究了将原有的单粒子均值方差映射优化(MVMO)扩展到其群体变体(MVMOS)的问题。通过数值实验,并与其他启发式优化方法进行比较,验证了该方法在解决多模态优化问题时的可行性和有效性。对算法参数的灵敏度分析表明了算法的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of the mean-variance mapping optimization for solving multimodal problems
Based on swarm intelligence principles and an enhanced mapping scheme, the extension of the original single-particle mean-variance mapping optimization (MVMO) to its swarm variant (MVMOS) is investigated in this paper. Numerical experiments and comparisons with other heuristic optimization methods, which were conducted on several composition test functions, demonstrate the feasibility and effectiveness of MVMOS when solving multimodal optimization problems. Sensitivity analysis of the algorithm parameters highlights its robust performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信