基于深度玻尔兹曼机和dropout神经网络的ICU住院死亡率预测

Daniel Ryan, B. Daley, Kwai L. Wong, Xiaopeng Zhao
{"title":"基于深度玻尔兹曼机和dropout神经网络的ICU住院死亡率预测","authors":"Daniel Ryan, B. Daley, Kwai L. Wong, Xiaopeng Zhao","doi":"10.1109/BSEC.2013.6618491","DOIUrl":null,"url":null,"abstract":"The capability to predict in-hospital mortality of patients in intensive care units will be of paramount importance. We explore state-of-the-art machine learning techniques to estimate the in-hospital mortality probability of a patient using various physiological measurements taken within the first forty-eight hours of patient admission. A generative model, a deep Boltzmann machine, is trained using a set of recently developed techniques to automatically extract features from the patient data, and then used to initialize a feed-forward neural network. The neural network is then discriminatively fine-tuned using an efficient approximation to an ensemble of neural networks, dropout, to prevent overfitting on the limited number of labeled training examples.","PeriodicalId":431045,"journal":{"name":"2013 Biomedical Sciences and Engineering Conference (BSEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Prediction of ICU in-hospital mortality using a deep Boltzmann machine and dropout neural net\",\"authors\":\"Daniel Ryan, B. Daley, Kwai L. Wong, Xiaopeng Zhao\",\"doi\":\"10.1109/BSEC.2013.6618491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The capability to predict in-hospital mortality of patients in intensive care units will be of paramount importance. We explore state-of-the-art machine learning techniques to estimate the in-hospital mortality probability of a patient using various physiological measurements taken within the first forty-eight hours of patient admission. A generative model, a deep Boltzmann machine, is trained using a set of recently developed techniques to automatically extract features from the patient data, and then used to initialize a feed-forward neural network. The neural network is then discriminatively fine-tuned using an efficient approximation to an ensemble of neural networks, dropout, to prevent overfitting on the limited number of labeled training examples.\",\"PeriodicalId\":431045,\"journal\":{\"name\":\"2013 Biomedical Sciences and Engineering Conference (BSEC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Biomedical Sciences and Engineering Conference (BSEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BSEC.2013.6618491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Biomedical Sciences and Engineering Conference (BSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSEC.2013.6618491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

预测重症监护病房病人住院死亡率的能力将是至关重要的。我们探索最先进的机器学习技术,利用患者入院后48小时内采取的各种生理测量来估计患者的住院死亡率。一个生成模型,一个深度玻尔兹曼机,使用一组最新开发的技术来训练,以自动从患者数据中提取特征,然后用于初始化前馈神经网络。然后,使用神经网络集合的有效近似值(dropout)对神经网络进行判别微调,以防止在有限数量的标记训练示例上过拟合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of ICU in-hospital mortality using a deep Boltzmann machine and dropout neural net
The capability to predict in-hospital mortality of patients in intensive care units will be of paramount importance. We explore state-of-the-art machine learning techniques to estimate the in-hospital mortality probability of a patient using various physiological measurements taken within the first forty-eight hours of patient admission. A generative model, a deep Boltzmann machine, is trained using a set of recently developed techniques to automatically extract features from the patient data, and then used to initialize a feed-forward neural network. The neural network is then discriminatively fine-tuned using an efficient approximation to an ensemble of neural networks, dropout, to prevent overfitting on the limited number of labeled training examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信