一种新的用于高度非线性系统建模和预测的转换输入域ANFIS

E. M. Abdelrahim, T. Yahagi
{"title":"一种新的用于高度非线性系统建模和预测的转换输入域ANFIS","authors":"E. M. Abdelrahim, T. Yahagi","doi":"10.1109/CCECE.2001.933761","DOIUrl":null,"url":null,"abstract":"In two or more-dimensional systems where the components of the sample data are strongly correlated, it is not proper to divide the input space into several subspaces without considering the correlation. In this paper, we propose the usage of the method of principal component in order to uncorrelate and remove any redundancy from the input space or the adaptive-neuro fuzzy inference systems (ANFIS). This leads to an effective partition of the input space to the fuzzy model and significantly reduces the modeling error. A computer simulation for three frequently used benchmark problems shows that ANFIS with the uncorrelation process performs better than the original ANFIS.","PeriodicalId":184523,"journal":{"name":"Canadian Conference on Electrical and Computer Engineering 2001. Conference Proceedings (Cat. No.01TH8555)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"A new transformed input-domain ANFIS for highly nonlinear system modeling and prediction\",\"authors\":\"E. M. Abdelrahim, T. Yahagi\",\"doi\":\"10.1109/CCECE.2001.933761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In two or more-dimensional systems where the components of the sample data are strongly correlated, it is not proper to divide the input space into several subspaces without considering the correlation. In this paper, we propose the usage of the method of principal component in order to uncorrelate and remove any redundancy from the input space or the adaptive-neuro fuzzy inference systems (ANFIS). This leads to an effective partition of the input space to the fuzzy model and significantly reduces the modeling error. A computer simulation for three frequently used benchmark problems shows that ANFIS with the uncorrelation process performs better than the original ANFIS.\",\"PeriodicalId\":184523,\"journal\":{\"name\":\"Canadian Conference on Electrical and Computer Engineering 2001. Conference Proceedings (Cat. No.01TH8555)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Conference on Electrical and Computer Engineering 2001. Conference Proceedings (Cat. No.01TH8555)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCECE.2001.933761\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Conference on Electrical and Computer Engineering 2001. Conference Proceedings (Cat. No.01TH8555)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE.2001.933761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

在二维或多维系统中,样本数据的组成部分是强相关的,将输入空间划分为几个子空间而不考虑相关性是不合适的。在本文中,我们提出了使用主成分方法来消除输入空间或自适应神经模糊推理系统(ANFIS)中的任何冗余。这导致输入空间的有效划分到模糊模型,并显着减少建模误差。对三个常用的基准问题进行了计算机仿真,结果表明带有不相关过程的ANFIS比原始的ANFIS具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new transformed input-domain ANFIS for highly nonlinear system modeling and prediction
In two or more-dimensional systems where the components of the sample data are strongly correlated, it is not proper to divide the input space into several subspaces without considering the correlation. In this paper, we propose the usage of the method of principal component in order to uncorrelate and remove any redundancy from the input space or the adaptive-neuro fuzzy inference systems (ANFIS). This leads to an effective partition of the input space to the fuzzy model and significantly reduces the modeling error. A computer simulation for three frequently used benchmark problems shows that ANFIS with the uncorrelation process performs better than the original ANFIS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信