基于汤普森采样的机器人团队多目标搜索

Yidan Chen, Melvin Ticiano Gao
{"title":"基于汤普森采样的机器人团队多目标搜索","authors":"Yidan Chen, Melvin Ticiano Gao","doi":"10.1109/ICDSCA56264.2022.9988679","DOIUrl":null,"url":null,"abstract":"Different Solutions and algorithm to the Multi-Armed Bandit (MAB) problem using method of exploration and exploitation trade-off, including Thompson Sampling. Which proved to have competitive results compared to popular methods of solution. Formulated MAB problem into Multi-robot Search problem. Showed data solving multi-robot search problem with Dynamic Thompson sampling.","PeriodicalId":416983,"journal":{"name":"2022 IEEE 2nd International Conference on Data Science and Computer Application (ICDSCA)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-target Search Using Teams of Robots Based on Thompson Sampling\",\"authors\":\"Yidan Chen, Melvin Ticiano Gao\",\"doi\":\"10.1109/ICDSCA56264.2022.9988679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Different Solutions and algorithm to the Multi-Armed Bandit (MAB) problem using method of exploration and exploitation trade-off, including Thompson Sampling. Which proved to have competitive results compared to popular methods of solution. Formulated MAB problem into Multi-robot Search problem. Showed data solving multi-robot search problem with Dynamic Thompson sampling.\",\"PeriodicalId\":416983,\"journal\":{\"name\":\"2022 IEEE 2nd International Conference on Data Science and Computer Application (ICDSCA)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 2nd International Conference on Data Science and Computer Application (ICDSCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSCA56264.2022.9988679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 2nd International Conference on Data Science and Computer Application (ICDSCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSCA56264.2022.9988679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于探索与开发权衡的多臂盗匪问题的不同解与算法,包括汤普森采样。事实证明,与流行的解决方法相比,该方法具有竞争力。将MAB问题转化为多机器人搜索问题。展示了用动态汤普森采样方法求解多机器人搜索问题的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-target Search Using Teams of Robots Based on Thompson Sampling
Different Solutions and algorithm to the Multi-Armed Bandit (MAB) problem using method of exploration and exploitation trade-off, including Thompson Sampling. Which proved to have competitive results compared to popular methods of solution. Formulated MAB problem into Multi-robot Search problem. Showed data solving multi-robot search problem with Dynamic Thompson sampling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信