用PSA划分技术求解四目标问题的等间隔Pareto前

Christian Domínguez-Medina, G. Rudolph, O. Schütze, H. Trautmann
{"title":"用PSA划分技术求解四目标问题的等间隔Pareto前","authors":"Christian Domínguez-Medina, G. Rudolph, O. Schütze, H. Trautmann","doi":"10.1109/CEC.2013.6557960","DOIUrl":null,"url":null,"abstract":"Here we address the problem of computing finite size Hausdorff approximations of the Pareto front of four-objective optimization problems by means of evolutionary computing. Since many applications desire an approximation evenly spread along the Pareto front and approximations that are good in the Hausdorff sense are typically evenly spread along the Pareto front we consider three different evolutionary multi-objective algorithms tailored to that purpose, where two of them are based on the Part and Selection Algorithm (PSA). Finally, we present some numerical results indicating the strength of the novel methods.","PeriodicalId":211988,"journal":{"name":"2013 IEEE Congress on Evolutionary Computation","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Evenly spaced Pareto fronts of quad-objective problems using PSA partitioning technique\",\"authors\":\"Christian Domínguez-Medina, G. Rudolph, O. Schütze, H. Trautmann\",\"doi\":\"10.1109/CEC.2013.6557960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here we address the problem of computing finite size Hausdorff approximations of the Pareto front of four-objective optimization problems by means of evolutionary computing. Since many applications desire an approximation evenly spread along the Pareto front and approximations that are good in the Hausdorff sense are typically evenly spread along the Pareto front we consider three different evolutionary multi-objective algorithms tailored to that purpose, where two of them are based on the Part and Selection Algorithm (PSA). Finally, we present some numerical results indicating the strength of the novel methods.\",\"PeriodicalId\":211988,\"journal\":{\"name\":\"2013 IEEE Congress on Evolutionary Computation\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Congress on Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2013.6557960\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2013.6557960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文用进化计算的方法解决了四目标优化问题Pareto前沿的有限大小Hausdorff逼近问题。由于许多应用程序都希望近似沿帕累托前沿均匀分布,而在Hausdorff意义上良好的近似通常沿帕累托前沿均匀分布,因此我们考虑了针对该目的定制的三种不同的进化多目标算法,其中两种基于部分和选择算法(PSA)。最后,我们给出了一些数值结果,表明了新方法的强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evenly spaced Pareto fronts of quad-objective problems using PSA partitioning technique
Here we address the problem of computing finite size Hausdorff approximations of the Pareto front of four-objective optimization problems by means of evolutionary computing. Since many applications desire an approximation evenly spread along the Pareto front and approximations that are good in the Hausdorff sense are typically evenly spread along the Pareto front we consider three different evolutionary multi-objective algorithms tailored to that purpose, where two of them are based on the Part and Selection Algorithm (PSA). Finally, we present some numerical results indicating the strength of the novel methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信