基于PET的中文短文本实体链接模型

Xiaofan Yan, Jie Cheng, Ru Zhang, Jiahui Wei, Liandong Chen, Kai Cheng
{"title":"基于PET的中文短文本实体链接模型","authors":"Xiaofan Yan, Jie Cheng, Ru Zhang, Jiahui Wei, Liandong Chen, Kai Cheng","doi":"10.1145/3568364.3568378","DOIUrl":null,"url":null,"abstract":"Existing Chinese short text entity link models are less, and the short text is limited and handled by the context missing and the processing noise. There is still a lot of space to improve the accuracy. This paper proposes a Chinese short text entity linking model, encoding the mention and entity representation of Pattern-Exploiting Training (PET), and learning the potential relationship between the entities in the knowledge base, based on contrastive learning. Our Chinese short text model experiments on Duel2.0 dataset and improves the result.","PeriodicalId":262799,"journal":{"name":"Proceedings of the 4th World Symposium on Software Engineering","volume":"05 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chinese Short Text Entity Linking Model Based on PET\",\"authors\":\"Xiaofan Yan, Jie Cheng, Ru Zhang, Jiahui Wei, Liandong Chen, Kai Cheng\",\"doi\":\"10.1145/3568364.3568378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing Chinese short text entity link models are less, and the short text is limited and handled by the context missing and the processing noise. There is still a lot of space to improve the accuracy. This paper proposes a Chinese short text entity linking model, encoding the mention and entity representation of Pattern-Exploiting Training (PET), and learning the potential relationship between the entities in the knowledge base, based on contrastive learning. Our Chinese short text model experiments on Duel2.0 dataset and improves the result.\",\"PeriodicalId\":262799,\"journal\":{\"name\":\"Proceedings of the 4th World Symposium on Software Engineering\",\"volume\":\"05 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 4th World Symposium on Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3568364.3568378\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th World Symposium on Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3568364.3568378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现有的中文短文本实体链接模型较少,并且受上下文缺失和处理噪声的限制。准确性仍有很大的提高空间。本文提出了一种基于对比学习的中文短文本实体链接模型,该模型对模式挖掘训练(PET)的提及和实体表示进行编码,并学习知识库中实体之间的潜在关系。本文在Duel2.0数据集上对中文短文本模型进行了实验,并对实验结果进行了改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chinese Short Text Entity Linking Model Based on PET
Existing Chinese short text entity link models are less, and the short text is limited and handled by the context missing and the processing noise. There is still a lot of space to improve the accuracy. This paper proposes a Chinese short text entity linking model, encoding the mention and entity representation of Pattern-Exploiting Training (PET), and learning the potential relationship between the entities in the knowledge base, based on contrastive learning. Our Chinese short text model experiments on Duel2.0 dataset and improves the result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信