用三种方法预测酶蛋白β-发夹基序

Haixia Long, Xiuzhen Hu
{"title":"用三种方法预测酶蛋白β-发夹基序","authors":"Haixia Long, Xiuzhen Hu","doi":"10.1109/ICNC.2012.6234521","DOIUrl":null,"url":null,"abstract":"The authors use three methods, including matrix scoring algorithm, increment of diversity algorithm and Random Forest algorithm. They are used to predict β-hairpin motifs in the ArchDB-EC and ArchDB40 dataset. In the ArchDB-EC dataset, we obtain the accuracy of 68.5%, 79.8% and 84.3%, respectively. Matthew's correlation coefficient are 0.17, 0.61 and 0.63, respectively. Using same three methods in the ArchDB40 dataset, we obtain the accuracy and Matthew's correlation coefficient of 67.9% and 0.39, 75.2% and 0.51, 83.5% and 0.60, respectively. Experiments show that Random Forest algorithm for predicting β-hairpin motifs is best and the predictive results in ArchDB40 dataset are better than previous results.","PeriodicalId":404981,"journal":{"name":"2012 8th International Conference on Natural Computation","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Prediction β-hairpin motifs in enzyme protein using three methods\",\"authors\":\"Haixia Long, Xiuzhen Hu\",\"doi\":\"10.1109/ICNC.2012.6234521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors use three methods, including matrix scoring algorithm, increment of diversity algorithm and Random Forest algorithm. They are used to predict β-hairpin motifs in the ArchDB-EC and ArchDB40 dataset. In the ArchDB-EC dataset, we obtain the accuracy of 68.5%, 79.8% and 84.3%, respectively. Matthew's correlation coefficient are 0.17, 0.61 and 0.63, respectively. Using same three methods in the ArchDB40 dataset, we obtain the accuracy and Matthew's correlation coefficient of 67.9% and 0.39, 75.2% and 0.51, 83.5% and 0.60, respectively. Experiments show that Random Forest algorithm for predicting β-hairpin motifs is best and the predictive results in ArchDB40 dataset are better than previous results.\",\"PeriodicalId\":404981,\"journal\":{\"name\":\"2012 8th International Conference on Natural Computation\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 8th International Conference on Natural Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2012.6234521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 8th International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2012.6234521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文采用了矩阵评分算法、多样性增量算法和随机森林算法。它们被用来预测ArchDB-EC和ArchDB40数据集中的β-发夹基序。在ArchDB-EC数据集中,我们获得的准确率分别为68.5%、79.8%和84.3%。马修相关系数分别为0.17、0.61和0.63。在ArchDB40数据集上使用相同的三种方法,我们得到的准确率和马修相关系数分别为67.9%和0.39、75.2%和0.51、83.5%和0.60。实验表明,随机森林算法对β-发夹图案的预测效果最好,在ArchDB40数据集上的预测结果优于以往的预测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction β-hairpin motifs in enzyme protein using three methods
The authors use three methods, including matrix scoring algorithm, increment of diversity algorithm and Random Forest algorithm. They are used to predict β-hairpin motifs in the ArchDB-EC and ArchDB40 dataset. In the ArchDB-EC dataset, we obtain the accuracy of 68.5%, 79.8% and 84.3%, respectively. Matthew's correlation coefficient are 0.17, 0.61 and 0.63, respectively. Using same three methods in the ArchDB40 dataset, we obtain the accuracy and Matthew's correlation coefficient of 67.9% and 0.39, 75.2% and 0.51, 83.5% and 0.60, respectively. Experiments show that Random Forest algorithm for predicting β-hairpin motifs is best and the predictive results in ArchDB40 dataset are better than previous results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信