低温条件下电动汽车充电对电网的影响

I. S. Bayram
{"title":"低温条件下电动汽车充电对电网的影响","authors":"I. S. Bayram","doi":"10.1109/UPEC50034.2021.9548276","DOIUrl":null,"url":null,"abstract":"Deep decarbonisation of the transportation requires widespread adoption of electric vehicles (EVs). Currently, the dominant energy storage technology for EVs is lithium based batteries which are designed to work under mild ambient temperatures (e.g. 21 Celsius). However, most cities with high EV penetration experience cold winter months when the performance of EVs is significantly degraded. In this paper, we present an impact assessment of cold weather EV charging on the power networks by reviewing existing literature on empirical studies related to battery performance, EV driving range, and charger characteristics. Two potential issues are identified. First, charging EVs at low temperatures significantly increases distribution network harmonics, hence limits the number of EVs that can be charged at the same time. Second, more frequent charging of EVs increases demand from the grid. To quantify this, a Monte Carlo based simulation is developed for the case of UK and results show that nearly 450 MW of extra generation is needed to cushion impacts of cold weather charging of 11 million vehicles. The problems pertinent to temperature effects on EV charging require greater attention as EVs are becoming the main mode of transport in the next decade.","PeriodicalId":325389,"journal":{"name":"2021 56th International Universities Power Engineering Conference (UPEC)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Impacts of Electric Vehicle Charging under Cold Weather on Power Networks\",\"authors\":\"I. S. Bayram\",\"doi\":\"10.1109/UPEC50034.2021.9548276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep decarbonisation of the transportation requires widespread adoption of electric vehicles (EVs). Currently, the dominant energy storage technology for EVs is lithium based batteries which are designed to work under mild ambient temperatures (e.g. 21 Celsius). However, most cities with high EV penetration experience cold winter months when the performance of EVs is significantly degraded. In this paper, we present an impact assessment of cold weather EV charging on the power networks by reviewing existing literature on empirical studies related to battery performance, EV driving range, and charger characteristics. Two potential issues are identified. First, charging EVs at low temperatures significantly increases distribution network harmonics, hence limits the number of EVs that can be charged at the same time. Second, more frequent charging of EVs increases demand from the grid. To quantify this, a Monte Carlo based simulation is developed for the case of UK and results show that nearly 450 MW of extra generation is needed to cushion impacts of cold weather charging of 11 million vehicles. The problems pertinent to temperature effects on EV charging require greater attention as EVs are becoming the main mode of transport in the next decade.\",\"PeriodicalId\":325389,\"journal\":{\"name\":\"2021 56th International Universities Power Engineering Conference (UPEC)\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 56th International Universities Power Engineering Conference (UPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UPEC50034.2021.9548276\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 56th International Universities Power Engineering Conference (UPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UPEC50034.2021.9548276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

交通运输的深度脱碳需要广泛采用电动汽车。目前,电动汽车的主要储能技术是锂基电池,这种电池可以在温和的环境温度(例如21摄氏度)下工作。然而,大多数电动汽车普及率高的城市都经历了寒冷的冬季,电动汽车的性能明显下降。在本文中,我们通过回顾现有的关于电池性能、电动汽车续驶里程和充电器特性的实证研究文献,对寒冷天气下电动汽车充电对电网的影响进行了评估。发现了两个潜在问题。首先,在低温下给电动汽车充电会显著增加配电网的谐波,从而限制了同时充电的电动汽车数量。其次,电动汽车更频繁的充电增加了电网的需求。为了量化这一点,针对英国的情况开发了基于蒙特卡罗的模拟,结果表明,需要近450兆瓦的额外发电量来缓冲1100万辆汽车在寒冷天气充电的影响。随着电动汽车在未来十年成为主要的交通方式,温度对电动汽车充电的影响问题需要更多的关注。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impacts of Electric Vehicle Charging under Cold Weather on Power Networks
Deep decarbonisation of the transportation requires widespread adoption of electric vehicles (EVs). Currently, the dominant energy storage technology for EVs is lithium based batteries which are designed to work under mild ambient temperatures (e.g. 21 Celsius). However, most cities with high EV penetration experience cold winter months when the performance of EVs is significantly degraded. In this paper, we present an impact assessment of cold weather EV charging on the power networks by reviewing existing literature on empirical studies related to battery performance, EV driving range, and charger characteristics. Two potential issues are identified. First, charging EVs at low temperatures significantly increases distribution network harmonics, hence limits the number of EVs that can be charged at the same time. Second, more frequent charging of EVs increases demand from the grid. To quantify this, a Monte Carlo based simulation is developed for the case of UK and results show that nearly 450 MW of extra generation is needed to cushion impacts of cold weather charging of 11 million vehicles. The problems pertinent to temperature effects on EV charging require greater attention as EVs are becoming the main mode of transport in the next decade.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信