没有素数检验的随机素数

Pascal Giorgi, Bruno Grenet, Armelle Perret du Cray, Daniel S. Roche
{"title":"没有素数检验的随机素数","authors":"Pascal Giorgi, Bruno Grenet, Armelle Perret du Cray, Daniel S. Roche","doi":"10.1145/3476446.3536191","DOIUrl":null,"url":null,"abstract":"Numerous algorithms call for computation over the integers modulo a randomly-chosen large prime. In some cases, the quasi-cubic complexity of selecting a random prime can dominate the total running time. We propose a new variant of dynamic evaluation, applied to a randomly-chosen (composite) integer. The transformation we propose can apply to any algorithm in the algebraic RAM model, even allowing randomization. The resulting transformed algorithm avoids any primality tests and will, with constant positive probability, have the same result as the original computation modulo a randomly-chosen prime. As an application, we demonstrate how to compute the exact number of nonzero terms in an unknown integer polynomial in quasi-linear time. We also show how the same algorithmic transformation technique can be used for computing modulo random irreducible polynomials over a finite field.","PeriodicalId":130499,"journal":{"name":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Random Primes without Primality Testing\",\"authors\":\"Pascal Giorgi, Bruno Grenet, Armelle Perret du Cray, Daniel S. Roche\",\"doi\":\"10.1145/3476446.3536191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerous algorithms call for computation over the integers modulo a randomly-chosen large prime. In some cases, the quasi-cubic complexity of selecting a random prime can dominate the total running time. We propose a new variant of dynamic evaluation, applied to a randomly-chosen (composite) integer. The transformation we propose can apply to any algorithm in the algebraic RAM model, even allowing randomization. The resulting transformed algorithm avoids any primality tests and will, with constant positive probability, have the same result as the original computation modulo a randomly-chosen prime. As an application, we demonstrate how to compute the exact number of nonzero terms in an unknown integer polynomial in quasi-linear time. We also show how the same algorithmic transformation technique can be used for computing modulo random irreducible polynomials over a finite field.\",\"PeriodicalId\":130499,\"journal\":{\"name\":\"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3476446.3536191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3476446.3536191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

许多算法都需要对随机选择的大素数取模进行计算。在某些情况下,选择随机素数的拟三次复杂度可以支配总运行时间。我们提出了一种新的动态求值方法,应用于随机选择的(复合)整数。我们提出的转换可以应用于代数RAM模型中的任何算法,甚至允许随机化。所得到的转换算法避免了任何素数测试,并且以恒定的正概率与原始计算结果相同,模取随机选择的素数。作为一个应用,我们演示了如何在拟线性时间内计算未知整数多项式的非零项的精确数目。我们还展示了如何使用相同的算法变换技术来计算有限域上的模随机不可约多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Random Primes without Primality Testing
Numerous algorithms call for computation over the integers modulo a randomly-chosen large prime. In some cases, the quasi-cubic complexity of selecting a random prime can dominate the total running time. We propose a new variant of dynamic evaluation, applied to a randomly-chosen (composite) integer. The transformation we propose can apply to any algorithm in the algebraic RAM model, even allowing randomization. The resulting transformed algorithm avoids any primality tests and will, with constant positive probability, have the same result as the original computation modulo a randomly-chosen prime. As an application, we demonstrate how to compute the exact number of nonzero terms in an unknown integer polynomial in quasi-linear time. We also show how the same algorithmic transformation technique can be used for computing modulo random irreducible polynomials over a finite field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信