{"title":"基于法医分类的统计建模提高耳朵识别对3D旋转的鲁棒性","authors":"T. Minamidani, Hideyashu Sai, D. Watabe","doi":"10.1504/ijbm.2019.10023703","DOIUrl":null,"url":null,"abstract":"Even though ear shape is used in forensic investigations, an ear identification system for assisting forensic experts is not well developed. One of the reasons for this is the three-dimensional (3D) concave shape of the ear; this changes its two-dimensional (2D) appearance when camera angles change. 3D statistical modelling is necessary to compensate for these changes in 2D appearance. In this study, we aim to increase the number of 3D statistical ear models based on a few forensic classification methods of ear shapes. Experimental evaluation shows that morphological classification based on the antihelix can improve the robustness of ear recognition against the change in camera angles.","PeriodicalId":262486,"journal":{"name":"Int. J. Biom.","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving ear recognition robustness against 3D rotation using statistical modelling based on forensic classification\",\"authors\":\"T. Minamidani, Hideyashu Sai, D. Watabe\",\"doi\":\"10.1504/ijbm.2019.10023703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Even though ear shape is used in forensic investigations, an ear identification system for assisting forensic experts is not well developed. One of the reasons for this is the three-dimensional (3D) concave shape of the ear; this changes its two-dimensional (2D) appearance when camera angles change. 3D statistical modelling is necessary to compensate for these changes in 2D appearance. In this study, we aim to increase the number of 3D statistical ear models based on a few forensic classification methods of ear shapes. Experimental evaluation shows that morphological classification based on the antihelix can improve the robustness of ear recognition against the change in camera angles.\",\"PeriodicalId\":262486,\"journal\":{\"name\":\"Int. J. Biom.\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Biom.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijbm.2019.10023703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Biom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijbm.2019.10023703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving ear recognition robustness against 3D rotation using statistical modelling based on forensic classification
Even though ear shape is used in forensic investigations, an ear identification system for assisting forensic experts is not well developed. One of the reasons for this is the three-dimensional (3D) concave shape of the ear; this changes its two-dimensional (2D) appearance when camera angles change. 3D statistical modelling is necessary to compensate for these changes in 2D appearance. In this study, we aim to increase the number of 3D statistical ear models based on a few forensic classification methods of ear shapes. Experimental evaluation shows that morphological classification based on the antihelix can improve the robustness of ear recognition against the change in camera angles.