{"title":"开放自适应系统的安全工程框架","authors":"D. Schneider, M. Trapp","doi":"10.1109/SASO.2011.20","DOIUrl":null,"url":null,"abstract":"In recent years it has become more and more evident that openness and adaptivity are key characteristics of next generation distributed systems. The reason for that is not least the advent of computing trends like Ubiquitous Computing, Ambient Intelligence, and Cyber Physical Systems, where systems are usually open for dynamic integration and able to react adaptively to changing situations. Despite being open and adaptive it is a common requirement for such systems to be safe. However, traditional safety assurance techniques, both state-of-the-practice and state-of-the-art, are not sufficient in this context. We recently developed some initial solution concepts based on conditional safety certificates and corresponding runtime analyses. In this paper we show how to operationalize these concepts. To this end we present in detail how to specify conditional safety certificates, how to transform them into suitable runtime models, and how these models finally support dynamic safety evaluations.","PeriodicalId":165565,"journal":{"name":"2011 IEEE Fifth International Conference on Self-Adaptive and Self-Organizing Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"A Safety Engineering Framework for Open Adaptive Systems\",\"authors\":\"D. Schneider, M. Trapp\",\"doi\":\"10.1109/SASO.2011.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years it has become more and more evident that openness and adaptivity are key characteristics of next generation distributed systems. The reason for that is not least the advent of computing trends like Ubiquitous Computing, Ambient Intelligence, and Cyber Physical Systems, where systems are usually open for dynamic integration and able to react adaptively to changing situations. Despite being open and adaptive it is a common requirement for such systems to be safe. However, traditional safety assurance techniques, both state-of-the-practice and state-of-the-art, are not sufficient in this context. We recently developed some initial solution concepts based on conditional safety certificates and corresponding runtime analyses. In this paper we show how to operationalize these concepts. To this end we present in detail how to specify conditional safety certificates, how to transform them into suitable runtime models, and how these models finally support dynamic safety evaluations.\",\"PeriodicalId\":165565,\"journal\":{\"name\":\"2011 IEEE Fifth International Conference on Self-Adaptive and Self-Organizing Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Fifth International Conference on Self-Adaptive and Self-Organizing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SASO.2011.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Fifth International Conference on Self-Adaptive and Self-Organizing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SASO.2011.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Safety Engineering Framework for Open Adaptive Systems
In recent years it has become more and more evident that openness and adaptivity are key characteristics of next generation distributed systems. The reason for that is not least the advent of computing trends like Ubiquitous Computing, Ambient Intelligence, and Cyber Physical Systems, where systems are usually open for dynamic integration and able to react adaptively to changing situations. Despite being open and adaptive it is a common requirement for such systems to be safe. However, traditional safety assurance techniques, both state-of-the-practice and state-of-the-art, are not sufficient in this context. We recently developed some initial solution concepts based on conditional safety certificates and corresponding runtime analyses. In this paper we show how to operationalize these concepts. To this end we present in detail how to specify conditional safety certificates, how to transform them into suitable runtime models, and how these models finally support dynamic safety evaluations.